Experimentally and Numerical Investigation on Behavior of Annular RC Slabs under Ring Loading

المؤلفون

  • Abdullah M. Abdal Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil, Kurdistan-Iraq.
  • Feirusha S. Hamad Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil, Kurdistan-Iraq.

DOI:

https://doi.org/10.25212/lfu.qzj.5.2.31

الكلمات المفتاحية:

annular slab, classical theory, 3D modeling, FEM, stress

الملخص

This research presents the experimentally measured displacement and strain at specified locations of the concrete of tested annular reinforced concrete slabs subjected to lateral load with three different ratios of inner to outer radii and simply supported at the outer circumference. Performed 3D model of annular RC slabs under the axisymmetric ring load applied, as close as at the inner edge, and investigated their stress-strain state in the elastic stage. This study contains different approaches based on classical thin-plate (CTP) theory and performed a 3D finite-element (FE) model to predict the fields of radial and circumferential stresses and deflection of the slab. Experimentally investigated the crack widths and crack pattern of the two groups of slabs-group A- radially reinforced and group M–orthogonally reinforced.

added a correction factor to the CTP equations, which used to determine both radial and circumferential stresses. Also, investigated the appearance of the first cracks, deflection, failure mode, and the maximum value of the failure load for both cases of the reinforcement.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

Abaqus 2016 Documentation. (2016).

Agapov, V. P. (2016). Theory of Plate Analysis. НИУ МГСУ. https://www.twirpx.com/file/2260291/

Azizian, Z. G., & Dawe, D. J. (1985). Geometrically nonlinear analysis of rectangular mindlin plates using the finite strip method. Computers & Structures, 21(3), 423–436.

Balasubramanian, A. (2011). Plate Analysis with Different Geometries and Arbitrary Boundary Conditions. https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/9517/Balasubramanian_uta_2502M_11482.pdf?sequence=1

Chaudhari, S. V., & Chakrabarti, M. A. (2012). Modeling of concrete for nonlinear analysis using finite element code ABAQUS. International Journal of Computer Applications, 44(7), 14–18.

da Silva, G. S., Kosteski, L. E., & Iturrioz, I. (2020). Analysis of the failure process by using the Lattice Discrete Element Method in the Abaqus environment. Theoretical and Applied Fracture Mechanics, 102563.

Giner, E., Sukumar, N., Tarancón, J. E., & Fuenmayor, F. J. (2009). An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 76(3), 347–368.

Gujar, P. S., & Ladhane, K. B. (2015). Bending analysis of simply supported and clamped circular plate. International Journal of Civil Engineering, 2(5), 69–75.

Hamad, F. S., & Abdal, A. M. (2019). Theoretical Investigation of Stresses and Displacement in RC Annular Slabs. International Research Publication House, 12(6), 891–898.

Hibbitt, H. D. (1984). ABAQUS/EPGEN—A general purpose finite element code with emphasis on nonlinear applications. Nuclear Engineering and Design, 77(3), 271–297.

Jarak, T., & Soric, J. (2008). Analysis of rectangular square plates by the mixed Meshless Local Petrov-Galerkin (MLPG) approach. CMES: Computer Modeling in Engineering & Sciences, 38(3), 231–261.

Juárez-Luna, G., & Caballero-Garatachea, O. (2019). FE Modeling of Circular, Elliptic, and Triangular Isolated Slabs With a Continuous Damage Model. Frontiers in Built Environment, 5, 9.

Kartheek, T., & Das, T. V. (2020). 3D modelling and analysis of encased steel-concrete composite column using ABAQUS. Materials Today: Proceedings.

Khennane, A. (2013). Introduction to finite element analysis using MATLAB® and abaqus. CRC Press.

Ladevèze, P. (2002). The Exact Theory of Plate Bending. Journal of Elasticity, 68(1), 37–71.

Lebée, A., & Brisard, S. (2017). 3D Derivations of Static Plate Theories.

Matešan, D., Radnić, J., Grgić, N., & Baloević, G. (2013). Strength capacity of simply supported circular concrete slab. Materialwissenschaft Und Werkstofftechnik, 44(5), 416–422.

Mohammed, A. S. (2019). Validation of Finite Element Modeling for Rectangular Reinforced Concrete Beams with Web Openings. Journal of Engineering and Sustainable Development, 23(3), 89–98.

Reismann, H. (1988). Elastic plates: Theory and application. Wiley-Interscience.

Skibeli, M. (2017). Concrete Plates Designed with FEM-Prosjektering av betongplater med FEM [Master’s Thesis]. NTNU.

Takabatake, H. (2019). Simplified Analytical Methods of Elastic Plates. Springer.

Taylor, R. L., & Govindjee, S. (2004). Solution of clamped rectangular plate problems. Communications in Numerical Methods in Engineering, 20(10), 757–765.

Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-hill.

Ventsel, E., & Krauthammer, T. (2001). Thin Plates and Shells: Theory: Analysis, and Applications. CRC Press.

Vijayakumar, K. (2009). New Look at Kirchoff’s Theory of Plates. AIAA Journal, 47(4), 1045–1046.

Vijayakumar, Kaza. (2014). Review of a few selected theories of plates in bending. International Scholarly Research Notices, 2014.

Young, W. C., Budynas, R. G., & Sadegh, A. M. (2002). Roark’s formulas for stress and strain (Vol. 7). McGraw-Hill New York.

التنزيلات

منشور

2020-06-30

كيفية الاقتباس

Abdullah M. Abdal, & Feirusha S. Hamad. (2020). Experimentally and Numerical Investigation on Behavior of Annular RC Slabs under Ring Loading. QALAAI ZANIST JOURNAL, 5(2), 1069–1090. https://doi.org/10.25212/lfu.qzj.5.2.31

إصدار

القسم

Articles