Biosynthesis and characterization of chitosan nanoparticles, determination of its antifungal and antiaflatoxigenic against Aspergillus flavus isolates
DOI:
https://doi.org/10.25212/lfu.qzj.8.2.45Keywords:
Mycotoxin, isolate, UV light, chitosan, SEM.Abstract
Aflatoxin is a mycotoxin generated mostly by the fungus Aspergillus flavus, which may be found in food and feed. It is a carcinogenic poison for both humans and animals. The goal of this investigation was to see if toxicogenic A. flavus strains might be found on nuts in the Kurdistan Region. A total of Fifty nut samples. The colony color of A. flavus and texture were used to identify macromorphological qualities, whereas the spore color, size, structure, conidiophore structure, and vesicle shape were used to assess micromorphological properties. Direct imaging of the UV fluorescence of A. flavus colonies on coconut agar media (CAM) was used to detect aflatoxin formation. Natural compounds, such as chitosan, have been suggested as a way to prevent fungal infection because of their extensive and well-known antibacterial action against a variety of microorganisms. The goal of this entry was to morphologically characterize and determine aflatoxigenic A. flavus isolates, characterize nanoparticles using UV–visible, X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), and scanning electron microscope (SEM) analyses, and determine the formulations' in vitro antifungal activity on the treated fungus. Individual concentrations were created by altering the percentages of ingredients such chitosan solution, chitosan nanoparticles, glycerol, and canola oil. The final concentrations of chitosan solution and chitosan nanoparticles were 20% and 2% respectively. Chitosan nanoparticles completely inhibit the growth of A. flavus at 2%.
Downloads
References
Abbas, M., Naz, S. A., Shafique, M., Jabeen, N., & Abbas, S. (2019). Fungal contamination in dried fruits and nuts: A possible source of mycosis and mycotoxicosis. Pak. J. Bot, 51(4), 1523-1529.
Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of chitosan nanoparticles and their in-vitro characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713-1720.
Alhussaini, M. S. (2012). Mycobiota and mycotoxins of nuts and some dried fruits from Saudi Arabia. Journal of American Science, 8(12), 525-534.
Ali, S. W., Joshi, M., & Rajendran, S. (2011). Novel, Self-Assembled Antimicrobial Textile Coating Containing Chitosan Nanoparticles. Aatcc Review, 11(5).
Alkhersan, R. N., Khudor, M. H., & Abbas, B. A. (2016). Rapid detection of aflatoxigenic producing atrains of Aspergillus flavus from poultry fees by uv light and ammonia. Bas. J. Vet. Res, 14(4).
Almoammar, H., Bahkali, A. H., & Abd-Elsalam, K. A. (2013). A polyphasic method for the identification of aflatoxigenic'Aspergillus' species isolated from Camel feeds. Australian Journal of Crop Science, 7(11), 1707-1713.
Amal, A. (2010). Evaluation the inhibitory action of Egyptian honey from various sources on fungal and bacterial growth and aflatoxins production. Annals of Agricultural Science (Cairo), 55(2), 221-231.
Anfossi, L., Giovannoli, C., & Baggiani, C. (2016). Mycotoxin detection. Current opinion in biotechnology, 37, 120-126.
Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., . . . Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial crops and products, 54, 310-319.
Carvajal-Campos, A., Manizan, A. L., Tadrist, S., Akaki, D. K., Koffi-Nevry, R., Moore, G. G., . . . P. Oswald, I. (2017). Aspergillus korhogoensis, a novel aflatoxin producing species from the Côte d’Ivoire. Toxins, 9(11), 353.
Correa‐Pacheco, Z. N., Bautista‐Baños, S., Valle‐Marquina, M. Á., & Hernández‐López, M. (2017). The effect of nanostructured chitosan and chitosan‐thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fruit quality. Journal of phytopathology, 165(5), 297-305.
Cunha, S. C., Sa, S. V., & Fernandes, J. O. (2018). Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food and Chemical Toxicology, 114, 260-269.
Degola, F., Berni, E., & Restivo, F. M. (2011). Laboratory tests for assessing efficacy of atoxigenic Aspergillus flavus strains as biocontrol agents. International journal of food microbiology, 146(3), 235-243.
Diba, K., Kordbacheh, P., Mirhendi, S., Rezaie, S., & Mahmoudi, M. (2007). Identification of Aspergillus species using morphological characteristics. Pakistan journal of medical sciences, 23(6), 867.
Hagiwara, D., Sakai, K., Suzuki, S., Umemura, M., Nogawa, T., Kato, N., . . . Gonoi, T. (2017). Temperature during conidiation affects stress tolerance, pigmentation, and trypacidin accumulation in the conidia of the airborne pathogen Aspergillus fumigatus. PloS one, 12(5), e0177050.
Haque, M. A., Wang, Y., Shen, Z., Li, X., Saleemi, M. K., & He, C. (2020). Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial pathogenesis, 142, 104095.
Hoeltz, M. (2005). Estudo da influência de manejos pós-colheita na incidência de fungos e micotoxinas no arroz (Oryza sativa L.).
Horky, P., Skalickova, S., Baholet, D., & Skladanka, J. (2018). Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8(9), 727.
Iram, W., Anjum, T., Jabeen, R., & Abbas, M. (2018). Isolation of stored maize mycoflora, identification of aflatoxigenic fungi and its inhibition using medicinal plant extracts. International Journal of Agriculture and Biology, 20(9), 2149-2160.
Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., . . . Tabatabaei, M. (2015). Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT-Food Science and Technology, 60(1), 502-508.
Khaneghah, A. M., Fakhri, Y., Gahruie, H. H., Niakousari, M., & Sant’Ana, A. S. (2019). Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends in Food Science & Technology, 91, 95-105.
Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in microbiology, 7, 2170.
Marín, S., Hodžić, I., Ramos, A. J., & Sanchis, V. (2008). Predicting the growth/no-growth boundary and ochratoxin A production by Aspergillus carbonarius in pistachio nuts. Food Microbiology, 25(5), 683-689. doi:https://doi.org/10.1016/j.fm.2008.03.006
Mekawey, A. (2018). Effects Of Chitosan Nanoparticles as antimicrobial activity And on mycotoxin production. Acad. J. Agric. Res, 6, 101-106.
Murad, A. F., & Abdul-Rahim, E. A.-W. (2016). Molecularly diagnostic of aflatoxigenic Aspergillus flavus isolated from nuts. Research Journal of Environmental Toxicology, 10(1), 39.
Nagur, K. S., Sukarno, N., & Listiyowati, S. (2014). Identification of Aspergillus flavus and Detection of Its Aflatoxin Genes Isolated from Peanut and Peanut Processed Products. BIOTROPIA-The Southeast Asian Journal of Tropical Biology, 21(1), 59-70.
Nurunnabi, M., Revuri, V., Huh, K. M., & Lee, Y.-k. (2017). Polysaccharide based nano/microformulation: An effective and versatile oral drug delivery system. In Nanostructures for oral medicine (pp. 409-433): Elsevier.
Oh, J.-W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1), 21.
Rai, M., & Abd-Elsalam, K. A. (2019). Nanomycotoxicology: Treating Mycotoxins in the Nano Way: Academic Press.
Ramos-García, M. d. L., Bautista-Baños, S., Barrera-Necha, L. L., Bosquez-Molina, E., Alia-Tejacal, I., & Estrada-Carrillo, M. (2010). Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Revista mexicana de fitopatología, 28(1), 44-57.
Riba, A., Matmoura, A., Mokrane, S., Mathieu, F., & Sabaou, N. (2013). Investigations on aflatoxigenic fungi and aflatoxins contamination in some nuts sampled in Algeria. African Journal of Microbiology Research, 7(42), 4974-4980.
Rodrigues, P., Soares, C., Kozakiewicz, Z., Paterson, R., Lima, N., & Venâncio, A. (2007). Identification and characterization of Aspergillus flavus and aflatoxins.
Romero, G., Guerra, M., Paes, M. G., & Macêdo, V. (2001). Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L.(V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. The American journal of tropical medicine and hygiene, 65(5), 456-465.
Rostami, R., Nadafi, K., Aghamohammadi, A., NAJAFI, S. H., & FAZLZADEH, D. M. (2009). Survey of peanut fungal contamination and its relationship with ambient conditions in the Bazar of Zanjan.
Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677-683.
Saito, M., & Machida, S. (1999). A rapid identification method for aflatoxin-producing strains of Aspergillus flavus and A. parasiticus by ammonia vapor. Mycoscience, 40(2), 205-208.
Sathiyabama, M., & Parthasarathy, R. (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers, 151, 321-325.
Sukmawati, D., Setyaningsih, A., Rahayu, S., Rustam, Y., Moersilah, M., Wahyudi, P., & Husna, S. (2018). Isolation and characterization of aflatoxigenic Aspergillus spp. from maize of livestock feed from Bogor. Paper presented at the IOP conference series: materials science and engineering.
Taniwaki, M. (1996). Meios de cultura para contagem de fungos em alimentos. Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 30(2), 132-141.
Vaezifar, S., Razavi, S., Golozar, M. A., Karbasi, S., Morshed, M., & Kamali, M. (2013). Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. Journal of Cluster Science, 24(3), 891-903.
Varga, J., Kocsubé, S., Péteri, Z., Vágvölgyi, C., & Tóth, B. (2010). Chemical, Physical and Biological Approaches to Prevent Ochratoxin Induced Toxicoses in Humans and Animals. Toxins, 2(7), 1718-1750. Retrieved from https://www.mdpi.com/2072-6651/2/7/1718
Wang, E., & Wang, A. (2014). Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6 (1): 9–26. In.
Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species: CRC press.
Williams-Woodward, J. (2001). Simplified fungi identification key.
Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., . . . Kou, X. (2019). Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Analytica chimica acta, 1069, 1-27.
Yazdani, D., Zainal, A. M., Tan, Y., & Kamaruzaman, S. (2010). Evaluation of the detection techniques of toxigenic Aspergillus isolates. African Journal of Biotechnology, 9(45), 7654-7659.
Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., & Tabatabaei, M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial crops and products, 69, 251-256.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Qalaai Zanist Journal allows the author to retain the copyright in their articles. Articles are instead made available under a Creative Commons license to allow others to freely access, copy and use research provided the author is correctly attributed.
Creative Commons is a licensing scheme that allows authors to license their work so that others may re-use it without having to contact them for permission