On Strong
DOI:
https://doi.org/10.25212/lfu.qzj.3.3.28Keywords:
stronglyAbstract
In this paper we study a definition of SF – rings over strongly γ - regular rings and we find some properties and main results for it by adding some conditions. Moreover, we continue to study SPF-rings over strongly γ - regular ring and we discuss several properties for it..
Downloads
References
Cohn P. M., "Reversible rings", Bull. London Math. Soc., 31(1), (1999), pp.641-648.
Fisher J.W., and Akmendaviz E.P., (1973), " Regular P.I-rings ", Pro. of the Amer. Math. Society, 39:247-252 .
JUNCHAO W. N., (2011). “STRONG REGULARITY OF SF-RINGS", ACTA MATH. VIETNAMICA, Volume 36 , Number 3 , 677-683 .
Lam T. Y., "Exercises in Classical Ring Theory", Springer-Verlag, New York Berlin Heidelberg, (2000).
Liang L. Wang L. and Liu Z. (1999), "On a generalization of semicommutative rings", Taiwanese J. of Math., 11(5), pp.1359-1368.
Mahmood R. D. and Abdul-Jabbar A. M., "On rings whose simple singular R-modules are flat, I", Raf. J. of Comp. Sc. and Math., 7(1), (2010), pp.51-57.
Mahmood R. D. and Ibraheem Z. M. (2007) , " ON REGULARITY AND SPF-RINGS", J.J. APP. SCI. VOL. 9, NO. 1, 1-6 .
Ming R.Y.C., (1995), "A note on regular rings", II”, Bull. Math. Soc. Sc. Math. Roumanie, 38 : 3-4
Ming R. Y. C., "On injectivity and P-injectivity IV ", Bull. Korean Math. Soc. 40(2), (2003), pp.223-234.
Mohammad A. J. and Salih S. M." On -regular rings", J. Edu. Sci., 18(4), (2006), pp.118-139.
Rege M. B., "On Von Neumann regular rings and SF-rings", Math. Japonica, 31(6), (1986), pp.927- 936.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Dina Ameer Basheer hadid
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Qalaai Zanist Journal allows the author to retain the copyright in their articles. Articles are instead made available under a Creative Commons license to allow others to freely access, copy and use research provided the author is correctly attributed.
Creative Commons is a licensing scheme that allows authors to license their work so that others may re-use it without having to contact them for permission