##plugins.themes.bootstrap3.article.main##

Mohammed Salih Mahdi

پوختە

Lately, the woman's chest cancer is the 2nd reason of deaths in females. Mam.mog.ram images are medical images, which can be read by physicians to detect breast carcinomas. In this paper, proposed Computer Aided Diagnosis system that can assist the doctors in hospitals to improve the diagnosis of the disease to detect cancer cells. Enhance the undesirable effects the of mam.mog.ram images by using slantlet transformer , set of different stages and classifies as normal, abnormal according to ID3 and SVM. For the same testing set, the practical outcomes displays SVM classifier with an accuracy of 95% and ID3 classifier with an accuracy of 92% based on MIAS database.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

بەش
Articles

چۆنییەتی بەکارهێنانی سەرچاوە

توێژینەوە هاوشێوەکان

تۆ دەتوانیت گەڕانی پێشکەوتو کارا بکە بۆ دۆزینەوەی توێژینەوە هاوشێوەکان بەکار بهێنیت بۆ ئەم توێژیینەوەیە.