Using Logistic Regression and Cox Regression Models to Studying the Most Prognostic Factors for Leukemia patients

Authors

  • Kurdistan Ibrahim Mawlood Statistics Department / College of Administration and Economics/Salahaddin University – Erbil

DOI:

https://doi.org/10.25212/lfu.qzj.4.3.20

Keywords:

Survival Analysis, logistic regression, Cox regression model, Hazard Function, Leukemia..

Abstract

The basic idea of this study focused on the using of two advanced statistical methods for studding the most important factors affecting the leukemia in Erbil city. The logistic regression was chosen and Cox regression as being applicable on this  studies. The results indicated that, in spite of the different regression coefficients in somewhat to logistic regression and Cox regression, have not reached to the same variables that have an impact on the phenomenon. Moreover the results indicated that the surgery is the most important factor affecting the leukemia survival patients in both methods. validation was done by calculating two  model selecting criterion; Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) of each models are compared the smaller values of them. The data set of this study was obtained from Nanakali Hospital in the period from 1st January 2013 to 31st December 2018. The results obtained by utilizing the statistical packages ( Mat-lab and SPSS). 

Downloads

Download data is not yet available.

References

.التلباني ,شادي (2011 ":( د راسة مقارنة بين نموذج االنحدار اللوجيستي ونموذج انحدار كوكس لدراسة أهم العوامل االقتصادية والديمو غرافية المؤثرة على معرفة واتجاهات الشباب نحو قضايا الصحة اإلنجابية" رسالة دكتوراه غير منشوره , جامعة أبو بكر بلقايد , تلمسان , الجزائر.

.عباس، علي خظر)2012":)استخدام نموذج االنحدار اللوجستي في التنبؤ بالدوال ذات المتغيرات االقتصادية التابعة النوعية" مجلة جامعة كركوك للعلوم االدارية واالقتصادية، المجلد .)2(العدد( 2(

.مولود ، كوردستان ابراهيم )2000":)استخدام التحليل المميز لتشخيص اهم العومل المؤثرة في التصنيف السريري لمرض القلب " رسالة ماجستير علوم في االحصاء، جامعة صالح الدين/ اربيل، كلية االدارة واالقتصاد.

Archer, J. & Lemeshow, S. (2006) "Goodness-of-fit test for a logistic regression model fitted using survey sample data". The Stata

Journal, Vol. 6, N0. 1, PP. 97–105

David, W & Hosmer, JR. (2013) "Applied Logistic Regression". Third Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.

John, F. (2014). "Introduction to Survival analysis". new work: sociology 761.

Hosmer, D. & Lemeshow, S. (2000). "Applied Logistic Regression". Second Edition, New York: Johnson Wiley & Sons, Inc.

Hosmer, D. & Lemeshow, S. & May, R. (2007). "Applied Survival Analsis: Regression Modeling of Time to Event Data" . Second

Edition, Wiley, New York ,USA .

Lee, T. & Wang, W. (2003). " Statistical Methods for Survival Data Analysis". Second Edition. Wiley, New York.

Menard, Scott. (2002):" Applied Logistic Regression Analysis" Second Edition, Sage Publication, Inc.

Moore D. F. (2016) "Applied Survival Analysis Using R". Springer International Publishing Switzerland.

Peter, D. W. (1998). "Predicting Recidivism Using Survival Models". London: Springer-Verlag.

Wienke, A. (2011). "Frailty Models in Survival Analysis". london: Chapman & Hall/CRC.

Downloads

Published

2019-09-30

How to Cite

Kurdistan Ibrahim Mawlood. (2019). Using Logistic Regression and Cox Regression Models to Studying the Most Prognostic Factors for Leukemia patients. QALAAI ZANIST JOURNAL, 4(3), 705–724. https://doi.org/10.25212/lfu.qzj.4.3.20

Issue

Section

Articles