Using Logistic Regression and Cox Regression Models to Studying the Most Prognostic Factors for Leukemia patients
DOI:
https://doi.org/10.25212/lfu.qzj.4.3.20Keywords:
Survival Analysis, logistic regression, Cox regression model, Hazard Function, Leukemia..Abstract
The basic idea of this study focused on the using of two advanced statistical methods for studding the most important factors affecting the leukemia in Erbil city. The logistic regression was chosen and Cox regression as being applicable on this studies. The results indicated that, in spite of the different regression coefficients in somewhat to logistic regression and Cox regression, have not reached to the same variables that have an impact on the phenomenon. Moreover the results indicated that the surgery is the most important factor affecting the leukemia survival patients in both methods. validation was done by calculating two model selecting criterion; Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) of each models are compared the smaller values of them. The data set of this study was obtained from Nanakali Hospital in the period from 1st January 2013 to 31st December 2018. The results obtained by utilizing the statistical packages ( Mat-lab and SPSS).
Downloads
References
.التلباني ,شادي (2011 ":( د راسة مقارنة بين نموذج االنحدار اللوجيستي ونموذج انحدار كوكس لدراسة أهم العوامل االقتصادية والديمو غرافية المؤثرة على معرفة واتجاهات الشباب نحو قضايا الصحة اإلنجابية" رسالة دكتوراه غير منشوره , جامعة أبو بكر بلقايد , تلمسان , الجزائر.
.عباس، علي خظر)2012":)استخدام نموذج االنحدار اللوجستي في التنبؤ بالدوال ذات المتغيرات االقتصادية التابعة النوعية" مجلة جامعة كركوك للعلوم االدارية واالقتصادية، المجلد .)2(العدد( 2(
.مولود ، كوردستان ابراهيم )2000":)استخدام التحليل المميز لتشخيص اهم العومل المؤثرة في التصنيف السريري لمرض القلب " رسالة ماجستير علوم في االحصاء، جامعة صالح الدين/ اربيل، كلية االدارة واالقتصاد.
Archer, J. & Lemeshow, S. (2006) "Goodness-of-fit test for a logistic regression model fitted using survey sample data". The Stata
Journal, Vol. 6, N0. 1, PP. 97–105
David, W & Hosmer, JR. (2013) "Applied Logistic Regression". Third Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.
John, F. (2014). "Introduction to Survival analysis". new work: sociology 761.
Hosmer, D. & Lemeshow, S. (2000). "Applied Logistic Regression". Second Edition, New York: Johnson Wiley & Sons, Inc.
Hosmer, D. & Lemeshow, S. & May, R. (2007). "Applied Survival Analsis: Regression Modeling of Time to Event Data" . Second
Edition, Wiley, New York ,USA .
Lee, T. & Wang, W. (2003). " Statistical Methods for Survival Data Analysis". Second Edition. Wiley, New York.
Menard, Scott. (2002):" Applied Logistic Regression Analysis" Second Edition, Sage Publication, Inc.
Moore D. F. (2016) "Applied Survival Analysis Using R". Springer International Publishing Switzerland.
Peter, D. W. (1998). "Predicting Recidivism Using Survival Models". London: Springer-Verlag.
Wienke, A. (2011). "Frailty Models in Survival Analysis". london: Chapman & Hall/CRC.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Kurdistan Ibrahim Mawlood
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Qalaai Zanist Journal allows the author to retain the copyright in their articles. Articles are instead made available under a Creative Commons license to allow others to freely access, copy and use research provided the author is correctly attributed.
Creative Commons is a licensing scheme that allows authors to license their work so that others may re-use it without having to contact them for permission