A New Insight of MicroRNA-96 In Human Malignant Disorders and Drug Resistance
DOI:
https://doi.org/10.25212/lfu.qzj.8.4.53الكلمات المفتاحية:
Cancer, MicroRNA-96, Biomarker,Drug resistance.الملخص
miRNA-96 is a short non-coding RNA molecule which plays an essential function in the regulation of post-transcriptional gene, and play a role in the development of a number of illnesses, such as cancer, depending on the cellular setting, it may function as a tumor suppressor or an oncogene. According to a recent research, miRNA-96 levels has been decreased in gastric cancer, breast cancer, pancreatic cancer, renal cancer and cervical cancer. However, the levels of miRNA-96 in several kinds of cancers are increased, including colorectal, lung, prostate, glioma, osteosarcoma, and hepatocellular carcinoma. The current review aims to offer a summary of miRNA-96's role in the advancement of cancer illnesses and with an emphasis on dysregulated signaling pathways. Based on in vivo, in vitro, and human research, we also go over the function of this miRNA-96 as a cancer biomarker of prognosis and emphasize how it contributes to drug resistance.التنزيلات
المراجع
Bagban, M., Sharma, K., Saifi, S., Ilangovan, I., Sultana, S., & Numanoğlu, E. N. (2022). miR-96 and its versatile role in cancer. Advances in Cancer Biology-Metastasis, 100082.
Bhagtaney, L., & Sundarrajan, P. (2023). MicroRNA-induced Silencing Complex Assembly and MicroRNA Turnover. In Plant MicroRNAs and Stress Response (pp. 1-14): CRC Press.
Cambiagno, D. A., Giudicatti, A. J., Arce, A. L., Gagliardi, D., Li, L., Yuan, W., . . . Manavella, P. A. (2021). HASTY modulates miRNA biogenesis by linking pri-miRNA transcription and processing. Molecular plant, 14(3), 426-439.
Campos-Melo, D., Hawley, Z. C., McLellan, C., & Strong, M. J. (2022). MicroRNA turnover and nuclear function. In MicroRNA (pp. 109-140): Elsevier.
Chen, Y., Liu, H., Ning, S., Wei, C., Li, J., Wei, W., & Zhang, L. (2022). The High Ratio of the Plasma miR-96/miR-99b Correlated With Poor Prognosis in Patients With Metastatic Colorectal Cancer. Frontiers in molecular biosciences, 8, 799060.
Chu, F., Xu, X., Zhang, Y., Cai, H., Peng, J., Li, Y., . . . Chen, X. (2023). LIM-domain binding protein 2 was down-regulated by miRNA-96-5p inhibited the proliferation, invasion and metastasis of lung cancer H1299 cells. Clinics, 78, 100145.
Ding, L., Fang, Y., Li, Y., Hu, Q., Ai, M., Deng, K., . . . Xin, H. (2021). AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR‐96‐5p‐AIMP3‐p53 axis. Journal of Cellular and Molecular Medicine, 25(6), 3019-3030.
Dong, X.-Z., Song, Y., Lu, Y.-P., Hu, Y., Liu, P., & Zhang, L. (2019a). Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signaling pathway. Journal of natural medicines, 73(4), 777-788.
Dong, X.-Z., Song, Y., Lu, Y.-P., Hu, Y., Liu, P., & Zhang, L. (2019b). Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signaling pathway. Journal of natural medicines, 73, 777-788.
El-Derany, M. O., & AbdelHamid, S. G. (2021). Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: Emphasis on caspase-2 signaling inhibition. Biochemical Pharmacology, 190, 114624.
Elrebehy, M. A., Al-Saeed, S., Gamal, S., El-Sayed, A., Ahmed, A. A., Waheed, O., . . . Doghish, A. S. (2022). miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay—A review. International Journal of Biological Macromolecules, 214, 583-600.
Ergin, K., & Çetinkaya, R. (2022). Regulation of microRNAs. miRNomics: MicroRNA Biology and Computational Analysis, 1-32.
Fendler, A., Jung, M., Stephan, C., Erbersdobler, A., Jung, K., & Yousef, G. M. (2013). The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PloS one, 8(11), e80807.
Gao, F., & Wang, W. (2015). MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Molecular Medicine Reports, 11(2), 1200-1206.
Gao, X.-h., Zhang, Y.-l., Zhang, Z.-y., Guo, S.-s., Chen, X.-b., & Guo, Y.-z. (2020). MicroRNA-96-5p represses breast cancer proliferation and invasion through Wnt/β-catenin signaling via targeting CTNND1. Scientific reports, 10(1), 1-9.
Ge, T., Xiang, P., Mao, H., Tang, S., Zhou, J., & Zhang, Y. (2020). Inhibition of miR‑96 enhances the sensitivity of colorectal cancer cells to oxaliplatin by targeting TPM1. Experimental and therapeutic medicine, 20(3), 2134-2140.
Ghafouri-Fard, S., Glassy, M. C., Abak, A., Hussen, B. M., Niazi, V., & Taheri, M. (2021). The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomedicine & Pharmacotherapy, 138, 111496. doi:https: //doi.org/10.1016/j.biopha.2021.111496.
Gharib, A. F., Eed, E. M., Khalifa, A. S., Raafat, N., Shehab-Eldeen, S., Alwakeel, H. R., . . . Essa, A. (2022a). Value of Serum miRNA-96-5p and miRNA-99a-5p as Diagnostic Biomarkers for Hepatocellular Carcinoma. International Journal of General Medicine, 2427-2436.
Gharib, A. F., Eed, E. M., Khalifa, A. S., Raafat, N., Shehab-Eldeen, S., Alwakeel, H. R., . . . Essa, A. (2022b). Value of Serum miRNA-96-5p and miRNA-99a-5p as Diagnostic Biomarkers for Hepatocellular Carcinoma. International Journal of General Medicine, 15, 2427.
Gong, J.-M. (2018). miRNA-96 might serve as potential biomarkers for cervical cancer. Annals of Oncology, 29, ix83.
Gullotta, G., Korte, A., & Marquardt, S. (2023). Functional variation in the non-coding genome: molecular implications for food security. Journal of Experimental Botany, 74(7), 2338-2351.
Guo, H., Li, Q., Li, W., Zheng, T., Zhao, S., & Liu, Z. (2014). MiR-96 downregulates RECK to promote growth and motility of non-small cell lung cancer cells. Molecular and Cellular Biochemistry, 390, 155-160.
Guo, Z., Wang, X., Yang, Y., Chen, W., Zhang, K., Teng, B., . . . Qiu, Z. (2020). Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer. Molecular Therapy-Nucleic Acids, 22, 179-195.
Haflidadóttir, B. S., Larne, O., Martin, M., Persson, M., Edsjö, A., Bjartell, A., & Ceder, Y. (2013). Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PloS one, 8(8), e72400.
Han, J., & Mendell, J. T. (2022). MicroRNA turnover: A tale of tailing, trimming, and targets. Trends in biochemical sciences.
He, P. Y., Yip, W. K., Jabar, M. F., Mohtarrudin, N., Dusa, N. M., & Seow, H. F. (2019). Effect of the miR‑96‑5p inhibitor and mimic on the migration and invasion of the SW480‑7 colorectal cancer cell line. Oncology letters, 18(2), 1949-1960.
He, X., & Zou, K. (2020). MiRNA-96-5p contributed to the proliferation of gastric cancer cells by targeting FOXO3. The Journal of Biochemistry, 167(1), 101-108.
Hong, Y., Liang, H., Wang, Y., Zhang, W., Zhou, Y., Chen, S. a., . . . Wang, N. (2016a). miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Scientific reports, 6(1), 1-16.
Hong, Y., Liang, H., Wang, Y., Zhang, W., Zhou, Y., Chen, S. a., . . . Wang, N. (2016b). miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Scientific reports, 6(1), 37421.
Hu, N., Chen, L., Wang, C., & Zhao, H. (2019). MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells. Biomedicine & Pharmacotherapy, 112, 108720.
Hussen, B. M., Abdullah, S. R., Hama Faraj, G. S., Rasul, M. F., Salihi, A., Ghafouri-Fard, S., . . . Mokhtari, M. (2022). Exosomal circular RNA: a signature for lung cancer progression. Cancer Cell International, 22(1), 378. doi:10.1186/s12935-022-02793-7.
Hussen, B. M., Abdullah, S. R., Rasul, M. F., Jawhar, Z. H., Faraj, G. S. H., Kiani, A., & Taheri, M. (2023). MiRNA-93: a novel signature in human disorders and drug resistance. Cell Communication and Signaling, 21(1), 79.
Hussen, B. M., Hidayat, H. J., Salihi, A., Sabir, D. K., Taheri, M., & Ghafouri-Fard, S. (2021). MicroRNA: A signature for cancer progression. Biomedicine & Pharmacotherapy, 138, 111528. doi:https: //doi.org/10.1016/j.biopha.2021.111528
Hussen, B. M., Salihi, A., Abdullah, S. T., Rasul, M. F., Hidayat, H. J., Hajiesmaeili, M., & Ghafouri-Fard, S. (2022). Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathology - Research and Practice, 230, 153764. doi:https: //doi.org/10.1016/j.prp.2022.153764.
Jones, A. N., Walbrun, A., Falleroni, F., Rief, M., & Sattler, M. (2022). Conformational Effects of a Cancer-Linked Mutation in Pri-miR-30c RNA. Journal of Molecular Biology, 434(18), 167705.
Kanwal, N., Al Samarrai, O. R., Al-Zaidi, H. M. H., Mirzaei, A. R., & Heidari, M. J. (2023). Comprehensive analysis of microRNA (miRNA) in cancer cells. Cellular, Molecular and Biomedical Reports, 3(2), 89-97.
Kim, S.-A., Kim, I., Yoon, S. K., Lee, E. K., & Kuh, H.-J. (2015). Indirect modulation of sensitivity to 5-fluorouracil by microRNA-96 in human colorectal cancer cells. Archives of pharmacal research, 38(2), 239-248.
Letafati, A., Najafi, S., Mottahedi, M., Karimzadeh, M., Shahini, A., Garousi, S., . . . Hamblin, M. R. (2022). MicroRNA let-7 and viral infections: focus on mechanisms of action. Cellular & Molecular Biology Letters, 27(1), 1-47.
Li, Z.-R., Xu, G., Zhu, L.-Y., Chen, H., Zhu, J.-M., & Wu, J. (2022). GPM6A expression is suppressed in hepatocellular carcinoma through miRNA-96 production. Laboratory Investigation, 102(11), 1280-1291.
Ma, X., Shi, W., Peng, L., Qin, X., & Hui, Y. (2018). MiR-96 enhances cellular proliferation and tumorigenicity of human cervical carcinoma cells through PTPN9. Saudi journal of biological sciences, 25(5), 863-867.
Mencia, R., Gonzalo, L., Tossolini, I., & Manavella, P. A. (2023). Keeping up with the miRNAs: current paradigms of the biogenesis pathway. Journal of Experimental Botany, 74(7), 2213-2227.
Min, K.-H., Son, Y.-S., Yang, W.-M., & Lee, W. (2019). Implication of obesity-induced miR-96 in hepatic insulin resistance. RNA & DISEASE, 6.
Mirzaei, H., Rahimian, N., Mirzaei, H. R., Nahand, J. S., & Hamblin, M. R. (2022). MicroRNA Biogenesis and Function. In Exosomes and MicroRNAs in Biomedical Science (pp. 1-9): Springer.
Moazzeni, H., Najafi, A., & Khani, M. (2017). Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Molecular and cellular probes, 34, 45-52.
Park, E. G., Ha, H., Lee, D. H., Kim, W. R., Lee, Y. J., Bae, W. H., & Kim, H.-S. (2022). Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. International journal of molecular sciences, 23(16), 8950.
Park, S. E., Kim, W., Hong, J.-Y., Kang, D., Park, S., Suh, J., . . . Hwang, J. J. (2022). miR-96-5p targets PTEN to mediate sunitinib resistance in clear cell renal cell carcinoma. Scientific reports, 12(1), 1-12.
Pillar, N., Polsky, A. L., & Shomron, N. (2019). Dual inhibition of ABCE1 and LCP1 by microRNA-96 results in an additive effect in breast cancer mouse model. Oncotarget, 10(21), 2086.
Radhi, K. A., Matti, B. F., & Hamzah, I. H. (2023). The role of miRNA-96 and miRNA-150 between different BCR-ABL p210 transcript levels and between different levels of imatinib optimal response in CML patients. Human Gene, 36, 201166.
Rani, V., & Sengar, R. S. (2022). Biogenesis and mechanisms of microRNA‐mediated gene regulation. Biotechnology and bioengineering, 119(3), 685-692.
Ress, A. L., Stiegelbauer, V., Winter, E., Schwarzenbacher, D., Kiesslich, T., Lax, S., . . . Ling, H. (2015). MiR‐96‐5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Molecular carcinogenesis, 54(11), 1442-1450.
Samad, A. F. A., & Kamaroddin, M. F. (2023). Innovative approaches in transforming microRNAs into therapeutic tools. Wiley Interdisciplinary Reviews: RNA, 14(1), e1768.
Shi, Y., Zhao, Y., Shao, N., Ye, R., Lin, Y., Zhang, N., . . . Wang, S. (2017). Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells. Oncology letters, 13(6), 4402-4412.
Song, H.-M., Luo, Y., Li, D.-F., Wei, C.-K., Hua, K.-Y., Song, J.-L., . . . Fang, L. (2015). MicroRNA-96 plays an oncogenic role by targeting FOXO1 and regulating AKT/FOXO1/Bim pathway in papillary thyroid carcinoma cells. International journal of clinical and experimental pathology, 8(9), 9889.
Suzuki, H. I. (2023). Roles of MicroRNAs in Disease Biology. JMA journal, 6(2), 104-113.
Taheri, M., Mahmud Hussen, B., Tondro Anamag, F., Shoorei, H., Dinger, M. E., & Ghafouri-Fard, S. (2022). The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. Journal of Drug Targeting, 30(1), 1-21. doi:10.1080/1061186X.2021.1909052.
Tsai, Y.-C., Chen, W.-Y., Siu, M. K., Tsai, H.-Y., Yin, J. J., Huang, J., & Liu, Y.-N. (2017). Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6. Cancer letters, 384, 1-8.
Wang, B., Liu, X., & Meng, X. (2020). miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer. Bioscience Reports, 40. (4)
Wang, H., Ma, N., Li, W., & Wang, Z. (2020). MicroRNA-96-5p promotes proliferation, invasion and EMT of oral carcinoma cells by directly targeting FOXF2. Biology open, 9(3), bio049478.
Wang, Y., Huang, J.-W., Calses, P., Kemp, C. J., & Taniguchi, T. (2012). MiR-96 Downregulates REV1 and RAD51 to Promote Cellular Sensitivity to Cisplatin and PARP InhibitionMiR-96 in Chemosensitivity. Cancer Research, 72(16), 4037-4046.
Wang, Y., Luo, H., Li, Y., Chen, T., Wu, S., & Yang, L. (2012). hsa-miR-96 up-regulates MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas. Molecular Medicine Reports, 5(1), 260-265.
Wang, Z., Wei, Y., Zhu, H., Yu, L., Zhu, J., Han, Q., . . . Fan, G. (2022). LncRNA NDRG1 aggravates osteosarcoma progression and regulates the PI3K/AKT pathway by sponging miR-96-5p. BMC cancer, 22(1), 1-15.
Wei, S., Zheng, Y., Jiang, Y., Li, X., Geng, J., Shen, Y., . . . Chen, Y. (2019). The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine, 44, 182-193.
Wu, F., Wu, B., Zhang, X., Yang, C., Zhou, C., Ren, S., . . . Wang, G. (2021). Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Frontiers in oncology, 11, 699475.
Wu, H., Zhou, J., Mei, S., Wu, D., Mu, Z., Chen, B., . . . Liu, J. (2017). Circulating exosomal microRNA‐96 promotes cell proliferation, migration and drug resistance by targeting LMO7. Journal of Cellular and Molecular Medicine, 21(6), 1228-1236.
Wu, L., Pu, X., Wang, Q., Cao, J., Xu, F., Xu, L., & Li, K. (2016). miR‑96 induces cisplatin chemoresistance in non‑small cell lung cancer cells by downregulating SAMD9. Oncology letters, 11(2), 945-952.
Xie, W., Sun, F., Chen, L., & Cao, X. (2018). miR-96 promotes breast cancer metastasis by suppressing MTSS1. Oncology letters, 15(3), 3464-3471.
Yang, L., Liu, L., Zhang, X., Zhu, Y., Li, L., Wang, B., . . . Ren, C. (2020). miR-96 enhances the proliferation of cervical cancer cells by targeting FOXO1. Pathology-Research and Practice, 216(4), 152854.
Yang, N., Zhang, Q., & Bi, X. (2020). MiRNA-96 accelerates the malignant progression of ovarian cancer via targeting FOXO3a. Eur Rev Med Pharmacol Sci, 24(1), 65-73.
Yang, X., Li, N., Deng, W., Ma, Y., Han, X., Zhang, Z., . . . Luo, S. (2019). miRNA-96-5p inhibits the proliferation and migration of gastric cancer cells by targeting FoxQ1. Zhonghua Zhong liu za zhi [Chinese Journal of Oncology], 41(3), 193-199.
Yao, Q., Pei, Y., Zhang, X., & Xie, B. (2018). microRNA-96 acts as a tumor suppressor gene in human osteosarcoma via target regulation of EZRIN. Life sciences, 203, 1-11.
Yin, Z., Wang, W., Qu, G., Wang, L., Wang, X., & Pan, Q. (2020). MiRNA‐96‐5p impacts the progression of breast cancer through targeting FOXO3. Thoracic cancer, 11(4), 956-963.
Yu, S., Lu, Z., Liu, C., Meng, Y., Ma, Y., Zhao, W., . . . Chen, J. (2010). miRNA-96 Suppresses KRAS and Functions as a Tumor Suppressor Gene in Pancreatic CancermiR-96 Suppresses KRAS as a Tumor Suppressor. Cancer Research, 70(14), 6015-6025.
Zhang, H., Chen, R., & Shao, J. (2020). MicroRNA-96-5p facilitates the viability, migration, and invasion and suppresses the apoptosis of cervical cancer cells bynegatively modulating SFRP4. Technology in cancer research & treatment, 19, 1533033820934132.
Zhang, J., Kong, X., Li, J., Luo, Q., Li, X., Shen, L., . . . Fang, L. (2014). miR-96 promotes tumor proliferation and invasion by targeting RECK in breast cancer. Oncology reports, 31(3), 1357-1363.
Zhang, S., & Guo, W. (2019). Long non‑coding RNA MEG3 suppresses the growth of glioma cells by regulating the miR‑96‑5p/MTSS1 signaling pathway. Molecular Medicine Reports, 20(5), 4215-4225.
Zhang, W., Qian, P., Zhang, X., Zhang, M., Wang, H., Wu, M., . . . Perry, J. K. (2015). Autocrine/paracrine human growth hormone-stimulated MicroRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. Journal of Biological Chemistry, 290(22), 13812-13829.
Zhou, H.-Y., Wu, C.-Q., & Bi, E.-X. (2019). MiR-96-5p inhibition induces cell apoptosis in gastric adenocarcinoma. World journal of gastroenterology, 25(47), 6823.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
Qalaai Zanist Journal allows the author to retain the copyright in their articles. Articles are instead made available under a Creative Commons license to allow others to freely access, copy and use research provided the author is correctly attributed.
Creative Commons is a licensing scheme that allows authors to license their work so that others may re-use it without having to contact them for permission