Fast and Accurate Real Time Pedestrian Detection Using Convolutional Neural Network
##plugins.themes.bootstrap3.article.main##
Abstract
Recently, pedestrian detection has become an important problem of interest. Our work primarily depends on robust and fast deep neural network architectures. This paper used very efficient and recent methods for pedestrian detection. Recently, pedestrian detection has become an important problem of interest. This paper suggests robust convolutional neural network models to solve this problem. We primarily evaluate accuracy and speed. Our work primarily depends on robust and fast deep neural network architectures; substantial changes to those models achieve results that are competitive with prior state-of-the-art methods. As a result, we outperformed all the prior state-of-the-art pedestrian detection methods. We also overtook other models that use extra information during testing and training. All experiments used three pedestrian detection challenge benchmarks: Caltech-USA, INRIA, and ETH.
Downloads
##plugins.themes.bootstrap3.article.details##
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Qalaai Zanist Journal allows the author to retain the copyright in their articles. Articles are instead made available under a Creative Commons license to allow others to freely access, copy and use research provided the author is correctly attributed.
Creative Commons is a licensing scheme that allows authors to license their work so that others may re-use it without having to contact them for permission