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attracted considerable interest because of their ability to model
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complex phenomena. These equations capture nonlocal relations

in space and time with power-law memory kernels. Due to the

fractional integral, extensive applications of FDEs in engineering and science,

Conformable derivative research in this area has grown significantly all around the world.

Euler's equation Almost the arrangement representation of fragmentary
differential equation with distinctive conditions and deals with

some methods for analytically solving the linear and non-linear of
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10.25212/Ifu.qzj.7.1.44 derivative by several methods and illustrate many example.

1. Introduction

In this paper, our focus is on the availability and uniqueness of solutions for linear and
non-linear fractional differential equation.
D, (y)+h(®)y=k(t) (1)

WhenO<a <1l yeR"and D,(y) interpret the conformable derivative of y and
h,k:R— R are « -differentiable Functions.

D (y) +T(X)D, (y) +W (x)y =U (x) (2)
WhenT (x),W (x) and U(x) are « -differentiable functions and Yy is an unknown
function.
In this paper, we discuss the availability of alternatives for the conformable fractional
differential equation we give the solution of fractional differential equation both
kinds homogenous and particular solutions according to our methods .
The paper is structured as follows. After introducing the basic definitions and
theorems which are required to prove our main results, we presented the methods
such as, order reduction method or Abel’s formula, fractional equation with constant
coefficients, Euler’s equidimensional method (M. J. B. a. Z. A. llie, 2018), Variation of
parameters, Undetermined coefficients (Horani, 2016), will be explained for solve
fractional differential equation. In finally, we give some numerical example to
illustrate our main results.

2. Preliminaries
Definition 2.1: Function given h:[0,20) —» R then the conformable fractional derivative

of h of order « is determined by

wlay
Dah(x)zlingh(x“’)“ )=h0) s 0.0c01) (3)
0> 0
Occasionally, write h*(x) for D, h(x) to indicate the conformable derivative of hof

ordera (Khalil R. e., 2014).

Theorem 2.1: Let a €(0,1] and h,k be « -differentiable at a point x>0 then (Khalil

R. e., 2014).
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1. D, (ah+bk)=aD,(h)+bT,(k), Va,beR
2. D,(x")=px"*, VpeR

3. D,(1)=0,VieR
4
5

D, (hk) = hD, (k) + kD, (h)
kD, (h) - hD, (k)

k2
6. D,(h)=x"" %(x)
X

D, ()=

7. D, (hok)(x)= x**h (K(X))k*(x)
Theorem 2.2: conformable fractional derivative of known functions

D, (e”) =bx*“e*

D, (sin(bx)) = bx"* cos(bx), bel

D, (cos(bx)) =-bx"“sin(bx), bel

D, (tan(bx)) = bx*“ sec*(bx), bel

D, (cot(bx)) = —bx"* csc®(bx), bel

D, (sec(bx)) = bx"* sec(bx) tan(bx), b el
D, (csc(bx)) = —bx"* csc(bx) cot(bx), bel

® N U R WNRE

Da(ix“)zl
o
9. D, (sin(l X)) = cos(l X%)
[24 o
10. D, (cos(i X%)) =—sin(£x“)
o [24

l(Z 10

—X —X
11. D, (e* )=e“

Definition 2.2: Let h be a continuous function. Then fractional integral of his
represent by:

32n(t) = jt%x (4)

Where a>0,a €(0,1) and the integral is the normal integral (Khalil R. e., 2014).
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Example 2.1: find the following integral j°(v/tcos(t))

2

Jl(\[ toos(t) = [ J_COS(X) —= [ cos(x)dx =sint)
X 2
Theorem 2.3: Let h be any continuous function in the domain of j_ (Sene, 2018).then
D, j(h(t) =h(t) , for t >0 (5)

Proof: since, h is continues, then 2 f(t) is differentiable. So
ia —a d ia
D, (jzh()) =t —Jah(t)
e 8 [0 N0

=h(t)
Theorem 2.4: Let a €(0,1] and h is any continuous function in a domain of j, , for

t>a we have
Slizro]-1Y (6)

This theorem is essential to obtaln the analytical solution of conformable differential
equations.
3. Main results

Definition 3.1: In general, differential equations of order a are considered
mathematically represented by the following form: (M. J. B. a. Z. A. llie, 2018)

D, () +h(x)y =k(x) (7)
When O<a<lyeR" and D,(y) denotes the conformable derivative of y and
h,k:R—R are «a -differentiable Functions, if o =1 we use the classical differential
equations of first order shown like that y’'+h(t)(y) =k(t) We first take the case in
which k(t)=0 , then

D, (y)+h(x)y=0 (8)
Is called the homogeneous If k(t) =0 is called the non-homogeneous.
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Theorem 3.1: The homogeneous solution of the conformable differential equation (8)
is indicated by

a

y, (t) = ce™ln0 = gg'a’ (9)
When h is any continuous function in the domain of j° . (Sene, 2018)
Proof: we have just verified that equation (8) is fulfilled by obtaining the function.
Yo () =ce

By replacing into above equation and using theorem (2.4), we get

h(x)

D, (y) +h(x)y = ct* di[e-ﬁ““] +ch(x)e Jeh®
X
= —ox di[ i°h00)Je 00+ ch(x)e e
X

=—cx %e‘jgh‘x’ +ch(x)e ="
=0
Theorem 3.2: The particular solution of the conformable differential equation (7) is
given by
Y, (®) = A0 "0 (10)
where his any continues function in the domain of jJ and the function 1:R—R is
obtained through the following condition
() = J2 (ke ") (12)
Remark: The general candidate solution to the differential equations defined by (7)
is given below Y(X)=y, (X)+y, (X)
Example 3.1: find the particular and homogenous solution of the following
differential equation (Khalil R. e., 2014)
T, () +/xy =xe ™
2

Solution: by theorem (3. 1) homogeneous solution is y, =ce™™

3
By theorem (3. 2) particular solution is y, = A(x)e” Jah() =§x2eX
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Definition 3.2: Consider the general equation of the second order of fractional
differential equation based on a conformable derivative as follows

DP (y)+T(x)D, () +W (x)y =U (x). (12)
WhenT(x),W(x) and U(x) are « -differentiable functions and y is an unknown
function. If U(x) is zero, then fractional equation (12) reduces to the homogeneous
equation

D@ (y)+T (XD, (y) +W (x)y =0 (13)
when D?(y) =D, (D, ().

Definition 3.3: The way for finding Wronskian of two functions h(x) and k(x) is given
by (Horani, 2016)

h(x) O | %D k() -k ()D.h(X)

W(h(x),k(x))= D h(x) D k(x)

Definition 3.4: (Order reduction method) we assume that y, is a known nonzero
solution of equation (13), y, =vxy, is a solution of equation (13), where v is unknown

function
—— (ize—Ja(T(x») (14)
A
This formula is called Abel's formula, the general solution of the homogeneous
fractional differential equation of (13) is thus as follows

Yo =C Y1 +CY, (15)
Example 3.2: Find another solution for the following fractional differential equation.

2XxD?(y) ++/xD, (y) -2y =0 Where y,=x is solution

2 2

Solution: by the formula (14) we can get

2xDZ(y) +/xD;(y) —2y =0
2 2
1 1
D2 +——D ——=y=0
%(Y) X %(Y) <Y
1

. 1 —LIineo
= X x< —e 2 _
Yz J%(xz ) 2x
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Definition 3.5: We are now discussion of the homogeneous Equation (12) on a special
case where m and n are constant (M. J. B. a. Z. A. llie, 2018).

DZ(y)+mD, (y)+ny =0 (16)
For solve this fractional equation first we write as Characteristic equation of
differential equation

r’+mr+n=0 (17)
There are three kinds of situations:
Case 1: There are two real and distinct roots to the characteristic equation. r, and r,

1 1,

'S X
, in this casey, —e"«" and Y, —e%" are Independent linear solution of (16), then

the general solution is

W r i
Vo= HCe e (18)

Case 2: The Characteristic equation has double solution r=r, =r, therefore the
general solution is

1 o rix“
yh=(01+02;>< Je « (19)
Case 3: The characteristic equation has different root complex numbers, so they may
be written in the form a+iband our two real solutions of the equation. (16) Are like

below:

1
y; = (cosb(=x* )"
(04

a(ix“)

"and y, = (sinb( L x*))e™a
a
Then the general solution is
1.
y, =e K )(clcosb(ix")+czsin b(lx")) (20)
a a

Example 3.3: Determine the solution to the following differential equation (Sene,
2018).

D7 (y)-3D,(y) +2y =0

2 2
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Solution: by case 1 solution is given by

The characterizing equation is like that r? —3r+2=0, and have two distinct root,
r=1and r, = 2 the application of case 1, the solution is given by

y, = Ae 4+ Be 2

Definition 3.6: (Euler's fractional equidimensional equation) the differential fractional
homogeneous equation (M. J. B. a. Z. A. llie, 2018).

(EX“)ZDE(V(X)Hm(EX“)Da(y(X)Hny(X)=0,X>0- (21)
(04 (04
Where m,n constants are referred to as Euler's fractional equation, using the

independent change variable. z= In(lx“) We have
o

1 ,...d
D, (y(@)=(x) " (22)
_ L,d?
DZ(y(2)) = ( xey Y ( ) (23)
Substituting Equation (22) and (23) into Equatlon (21), results in
d2
o +(m 1) +ny=0 (24)

This equation (24) is a standard constant coefficient differential equation, and based
on this approach, the auxiliary equation has the following form.

rP+(m-Dr+n=0 (25)
Suppose for solve equation (25), we have three case:
Case 1: Suppose r, and r, are roots of Equation (25). If these are separate real

numbers, then the next solution Of (21) can be achieved.
=6 (XY 6y (X (26)
[24 o
Case 2: Ifr, =r1,, we derive

v, =(c1+c2|n(1x“))(1x“)ﬁ (27)
[04 (04
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Case 3: if r, and r, has different root complex numbers, then the general solution of

equation (21) will be derived as follows
Y, = (i x"‘)*’[clcosbln(i x%) +czsinbln(i x“)] (28)
[04 (04 o

Example 3.4: We consider the following homogenous equation.
1 a2 2 1 a
(;X ) Da(y(X))—Z(;X )D,, (y(x)) +2y(x) =0

Solution: There is an auxiliary equation. r* —3r+2=0, Solutions are r, =1and r, =2
therefore the answer is

1 1
= (=X +¢ (= x7)?
a a

Definition 3.7 :( Variation of parameters) Assume that y,,y, are two solutions linearly

independent homogenous fractional differential equation of the second order

fractional differential equation (13), it is assumed that the particular is (Horani, 2016).
. U (x

()) Yol yl()) (29)

W, (y W, (Y1, ¥2)

Example 3.5: Consider the fractlonal equation below

yp z_ylja

2xD? (y(x)) —\/§D1y(x) —2y(x) =4x® Where the homogeneous solutions are y, =
2 2
1

and vy, =0

Solution: we simplify the equation and substitution in the formula

1

D (¥(¥) = 5 X 2(Dy y(¥) - = y(x) = 2x°

2 2
. y,U (X) . y,U (X)
Yo =Vl <)t Yo lo\ <
P Wa<y1,y2)) ? vva<y1,y2>)
—X 1 .0 2x° x3
Yp =—Xjﬁdx+(—zx )JTdXZZ
X 2x2 X 2x2
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Definition 3.8: (Indeterminate coefficients) is a procedure for determiningy, when
(12) isin form (M. J. B. a. Z. A. llie, 2018).

DI (y) +mD, (y) +ny = f (x) (30)
Where m, n are constant and f(x) is

£ (x) = (a +a1(§>+a2(ﬁ)2 4

-+ a, (—) )e a sm;/( )
Or
f(x)=(ao+a1<§>+a2(§)2+

x“ 55 X<
--+a, (—)”)e @ cosy(—)
o (24

A particular solution is chosen from the form below

v, =[(& + ACT) + Ay s A(ﬁ)")eﬂ(?’siny(ﬁ) ;
a a a (31)

(8 -8B,y o8, ) sy )y

Example 3.6: identify the general solution of the following equation using
indeterminate coefficients.

D3 (y) 2D, (y) =18 ~10

3 3

Solution: the characteristic equationis r*=2r=0—-r(r-2)=0— r=0 and r=2
3
=c, +ce’

For finding y,we use the formula

(A +A) = axa+ LA
3 3

oo\l\)||—\

D, (¥,) =3AX3 + A,
D3 (y,)=2A
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We substitute y,, D, (y,), D§(yp) in the basic equation for finding constant
3 3
2

Yp = (2—?(3)7
3
So the general solution is

yg:yh+yp

432

Iz 3
=¢ +C,e3 —(2—— )X
3

4. Conclusion

In this article, explain briefly some methods for solving fractional deferential
equations. It is difficult to determine the general form of the conformable differential
equations. We know that there are numerous solutions to the conformable
differential equation. This article helps to provide the explicit form of the conformable
differential equation's candidate solution. These methods have been presented. We
get an exact solution as a result, so there is no need to use a numerical method.
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