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Graph theory is a fundamental branch of mathematics
with diverse applications in computer science and
various other fields. This research provides an
analytical overview of essential graph algorithms,
focusing on the Depth-First Search, Breadth-First
Search, Prim's algorithm, and Kruskal's algorithm for
finding minimum spanning trees. Through an in-depth
exploration of these algorithms, this study aims to
shed light on their principles, advantages, and
applications. The insights gained from this research
can be valuable in solving real-world problems that
involve networks and optimization.
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1. Introduction

Graphs serve as a powerful mathematical representation for modeling relationships,
networks, and structures in diverse domains [18]. The field of graph theory has given
rise to a multitude of algorithms, each designed to address specific graph-related
problems. In this research, we delve into the world of graph algorithms, focusing on
four fundamental ones: Depth-First Search (DFS), Breadth-First Search (BFS), Prim's
algorithm, and Kruskal's algorithm [15]. Our objective is to provide a comprehensive
understanding of these algorithms and highlight their significance in solving problems
related to connectivity, traversal, and optimization in graphs. These algorithms form
the backbone of numerous applications, from computer networking to route planning
and resource allocation [16]. By exploring the principles, characteristics, and
applications of these algorithms, we aim to equip researchers and practitioners with a
better understanding of how to harness the power of graph theory.

2. Undirected Graphs
An undirected graph is a pair G(V,E) where V is vertices set and E is edges set. Vertices
are often called nodes and the elements of the set E are called edges [4]. Figure (1)

shows an example of an undirected graph where: V={a,b,c,d} and E={(a,b), (a,d),
(b,c),(b,d) ,(c,d)}.

Figure (1) an example of an undirected graph
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3. Traversing graphs:
Most algorithms used to solve graph problems examine every vertex and every edge
[3]. There are two graph traversal strategies that each provide a way to visit every

vertex and every edge only once:

Depth-first search [13].
Breadth-first search [11].

3.1 Depth-first search:
Assuming G(V,E) is an undirected graph, applying the depth-first search method is as

follows:
[ ]

Initially, we designate a starting vertex as v and explore it.

Next, we opt for any edge (v, w) associated with vertex v and proceed to
explore w via this edge.

In a more general context, assuming x is vertex which most visited, the
exploration continues through selecting the edge between x and y that has
not been traversed yet and is connected to x. If y is visited earlier, we seek
another edge (unvisited) originating from x. If y hasn't been visited, we
explore y, and the process recommences from vertex y.

After investigating all possible paths stemming from y, we backtrack to x,
which served as the starting point for reaching y.

This process of choosing unexplored edges linked to x persists until all such
edges have been exhausted. The depth-first search algorithm can be
described as follows:

Inputs: G(V,E) graph is represented through adjacency lists L(v) where veV .

Outputs: The set of edges E is divided into two groups:

T: The set of tree edges.
B: set of inverse edges (visited edges)
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Procedure:
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The following flowchart shows the steps of DFS algorithm [17]:

Visit and mark the first node of the graph

A
Put to the first entry in the node adjacency
list

At the end of the

adjacency list? Done
Perform this
Has the node algorithm with
Already visited? the node as
the first one

*{Move to the next node on the adjacency list

3.2 Analysis of DFS:

We will now calculate the complexity of the algorithm as a function of n the number
of vertices of the graph and m the number of edges. We note that the two basic
operations in the algorithm are traversing the edges of the diagram and assigning
orders to the label vector. Regarding the address assignment process, we note that n
operations are performed in the main program and n operations are performed in the
DFS procedure. As for the edge traversal process, we note that the DFS procedure is
called once for each vertex, and we note that within DFS, the adjacency list for any
vertex is traversed only once, so we have O(m) traversal process as a total value.

We conclude from the above that the total complexity is O(m+n), while the remaining
steps require a smaller number of operations.
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Theorem 1: A depth-first search algorithm to traverse an undirected graph which
contains vertices (n) and edges (m) requires O[max(n,m)] steps.

The proof:
Assuming we have a list of vertices in an undirected graph and scan it only once,

searching for "new" vertices requires O(n) steps. The time taken by the DFS procedure
is directly suitable with the vertices number which near to vertex v, and the DFS
procedure is called only once for a given vertex v, because vertex v is addressed as
“old” when DFS is invoked for the first time. Thus, the complexity taken by DFS is
O[max(n,m)] [5].

Example: Suppose we have the undirected graph shown in the following figure:

Initially, all vertices will be in the “new” state. Assuming vertex “1” is chosen, then
DFS(1) will be executed. Assuming vertex “2” is chosen, since vertex “2” is in the “new”
state, (1,2) will be added. ) to T and DFS(2) will be called. The procedure DFS(2) may
select vertex "1", but vertex "1" is in the "old" state and will be ignored. Assuming
vertex "3" is selected, since vertex "3" is in the "new" state, (2,3) will be added. To T
then DFS(3) will be called and now all vertices adjacent to vertex “3” are in “old” state
so DFS(2) will be referenced. By continuing to execute DFS(2), edge (2,4) will be

selected and added to T, then DFS(4) will be called. Now there are no vertices adjacent
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to vertex “4” in the “new” state, so DFS(2) will be returned as well. There are no
vertices adjacent to vertex "2" in the "new" state, so DFS(1) will be returned.
Continuing the search, DFS(1) finds vertex "5" and applies the procedure DFS(5) to find
vertex "6". Thus, all vertices on the tree become in the “old” state, and thus the
algorithm reaches its end.

3.3 Breadth-first search:

We saw previously in the depth-first search method that to traverse the graph, every
new vertex in the “new” state is visited, so we continue searching, heading deeper into
the tree, then we go back through the last traversed vertex to branch in another
direction, and this leads to visiting all vertices. Existing in a subgraph adjacent to vertex
v before going to a new subgraph adjacent to vertex v.

In the breadth-first search method, vertices are visited in the order of increasing
distances from the starting point v, for example, where the distance is simply the
number of characters from the shortest path. By the shortest path that can be reached
from vertex v to vertex w, we mean the path that contains the least number of edges.
In other words, the algorithm visits all vertices that are a distance d away from vertex
v before visiting the vertices that are a distance d+1 away from vertex v [7].

3.4 Comparison between Depth-first and Breadth-first algorithms:

DFS and BFS represent two fundamental graph traversal algorithms employed for the
exploration and analysis of graphs or trees. Here's a comparative analysis between
these methods [2]:

1) Order of Exploration:
e DFS delves as far as it can along each branch before backtracking,
implying that it traverses deep into the graph before examining sibling
nodes.
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e BFS examines all neighboring nodes at the current depth before
progressing to nodes at the next depth, effectively covering the entire
breadth of the graph.

2) Data Structures Used:
e DFS is frequently implemented utilizing a stack, either explicitly or
through recursion.
e BFSrelies on a queue data structure for its implementation.

3) Completeness:
e Both algorithms are complete, meaning they will find a solution if one
exists.

4) Memory Usage:
e In specific scenarios, DFS may consume less memory than BFS because it
doesn't require the storage of all nodes at the current depth in a queue.
e BFS can consume more memory, especially in graphs with a wide
branching factor, as it needs to store all nodes at the current depth.

5) Optimality:
e BFS is guaranteed to find the shortest path in an unweighted graph,
making it optimal for such scenarios.
e DFS may not always discover the shortest path and depends on the order
of exploration.

6) Applications:
e DFS is often used in problems involving searching, backtracking, and
traversal of hierarchical structures like trees.
e BFS is frequently used in scenarios where you need to discover the
shortest path, the shortest distance, or minimal steps between nodes,
such as in navigation or puzzles.
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7) Time Complexity:
e DFS and BFS have a time complexity of O(V + E), where V is the number
of vertices, and E is the number of edges.

8) Space Complexity:
e DFS has a space complexity of O(V), where V is the maximum depth of the
recursion stack.
e BFS has a space complexity of O(V), where V is the maximum number of
nodes at a single level in the search.

In summary, the selection between DFS and BFS hinges on the particular problem and
the attributes of the graph or tree under consideration. If you need to discover the
shortest path or explore graph in more systematic way, BFS is usually preferred. If
you're interested in exploring all possibilities or looking for a specific target, DFS may
be more suitable.

4. Graph optimization problems:
In this section, two algorithms will be studied to find a Minimum Spanning Tree (MST)
for an undirected graph [12], which are Prim algorithm and Kruskal algorithm [8][1].

4.1 Prim algorithm to find MST:

We will study the problem for finding MST for a connected, weighted, undirected
graph. For disconnected graphs, the natural extension of the problem is to find MST
for each connected component each. It is known that it is possible to find connected
components in linear time. MST are only meaningful for undirected graphs with
character weights, so any reference to “graph” below will mean “undirected graph,”
and “weights” will always mean “character weights.” (weights edge). And remember
that the convention G(V,E,W) means that W is a function that assigns a weight to each
edge in E. This is the mathematical description. As for implementation (there is usually
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no “function”, but rather the weight of each edge is stored in the data structure for
that edge.

Definition: Minimum Spanning Tree (MST): Assume that G(V,E) is a connected,
undirected graph. A graph G1 is said to be the MST of a graph G if G1 is a partial graph
of G and represents an undirected tree containing all G vertices. The graph weight is
the sum of all weights for all edge, and the MST of the graph Weighted is the tree with

the lowest weight [6].

There are numerous scenarios in which the need arises to discover the MST. For
instance, it can be applied to identify the lowest way cost for linking a collection of
terminal units, be they cities, electrical terminals, computers, factories, or the means
of communication, such as roads or wires. The solution involves extracting the MST
from a graph where each edge is weighted to represent the connection cost.
Additionally, finding the MST plays a crucial role in routing algorithms for determining
the most efficient path.

Example: The following figure represents a weighted graph G and three minimum
generative trees.
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Prim algorithm initiates through selecting initial vertex and after that expands from the
current tree's part by picking a new vertex and an edge during each iteration. This new
edge links the new vertex to the existing tree [9]. While running the algorithm, we can
categorize the vertices into three classes arranged as follows:

Tree vertices: encompass the vertices within the currently constructed tree.

Fringing vertices: are those that are adjacent to a tree vertex but aren't part of the tree.
Invisible heads: are all other heads.

The pivotal step in the algorithm involves selecting a vertex from the fringe and the
letter associated with that vertex. Since the weights are associated with the letters, the
primary focus is on the letter rather than the vertex itself. The algorithm consistently
opts for the letter with the lowest weight, moving from the top of the tree to the top
of the fringe. The algorithm is described as follows:

void primMST (G, n) /OUTLINE

i
1

Initialize all vertices as unseen.

Select an arbitrary vertex s to start the tree; reclassify it as tree.
Reclassify all vertices adjacent to s as fringe.

while ( there are fringe vertices )

1
Select an edge of minimum weight between a tree vertex
t and a fringe vertex v;
Reclassify v as tree; add the edge tv to the tree:
Reclassify all unseen vertices adjacent to v as fringe.

¥
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We will perform one iteration of Prim's algorithm to illustrate the idea. Assume we
have the weighted graph shown in the following figure:

We assume that we will choose vertex A as the starting vertex. The vertices adjacent
to vertex A are B, G, and F, so they form the vertices of the fringe as shown in Figure
(a). In the first iteration of the While loop, we find that the edge (A, B) is the edge with
the least weight to the vertex of the fringe. Therefore, vertex B is added to the tree,
and the invisible vertices adjacent to vertex B enter the fringe, leading to the shape (b),
and we notice that the edge (B, G) It is not shown in Figure (b) because the edges (A,
G) are a better choice to reach vertex G because its weight is less. We also notice in the
figure that the solid lines are the edges of a tree, while the dashed lines are the edges
of the fringe vertices.

The tree so far

The tree so far [~

(a)

Fringe vertices (b)  Fringe vertices
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Prim's algorithm is an example of what is called a greedy algorithm. Greedy algorithms
are algorithms for optimal solution problems (i.e. problems in which we want the value
of a quantity to be a local minimum or maximum) at each step of the algorithm in the
hope that these choices will lead to an optimal solution. Comprehensive [10]. This
method works in many cases but not in all cases. Prim's algorithm is one of the cases
where this strategy works, and this can be easily demonstrated by induction. Since the
algorithm starts without selecting any edge, the edges that will be initially selected are
a subset of the edges present in the MST. Then we prove that after adding a smaller
edge (i.e., the edge with the lowest weight) from the tree to the vertex of Fringe, the
chosen set of edges remains contained in the MST.

Theorem 2: We assume that G(V,E,W) is a weighted connected graph, and that E' is a
subset of the edges of the MST tree T(V,Et) of the graph G. We assume that V' is a
vertices set located on the edges of E'. If (x,y) is an edge with the least weight such
that (ygV')(XxeV')then (E'U (X,Y)) is a subset of MST.

The Proof: If the edge (x,y) is in the set ET, then the requirement is produced directly.
Assume that (x,y) is not in ET. There is a path from x toy in tree T because the tree is
connected. We assume that (v,w) is the first edge in this path, as there is one vertex of
this edge that falls within the set of vertices V', and let this vertex be v. The following
figure shows a partial MST tree from a graph G.
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Since v lies within V' and w is not within V', therefore by choosing the edge (x,y)
then W(x,y) <W(v,w) and therefore W(T') <W(T) and so that T' are the MST
tree and thus the theorem is proven.

Now we can summarize Prim algorithm for generating MST as follows:

Inputs: n is an integer number greater than or equal to 2, an un-directed weighted
connected graph. The graph is showed as matrix W with two dimensional of size n
x n, where, W[i][j] is the weight of the edge connecting vertex i and vertex j.
Outputs: edges’ set F in a minimal generative tree of a graph.

Procedure:

void prim ( int n, const number W[ ][ ]. set_of edges & F )

i
index i, vnear;
number min;
edoe e;
index nearest [2..n];
number distance [2..n];
F=wp;
for (i=2;1<==n; i+ +)
i
nearest [i]=1 // for all vertices, initialize v1 to
distance[i] = W[1][i]: // be the nearest vertex in Y and
'
repeat { n - 1 times )
i
min = ao;
for ( i =2:1i-==mn; i++) // check each vertex for
if ( 0 = distance [i] = min ) | // being nearest to Y.
min = distance [i];
vaear =1 ;}
e = edge connecting vertices indexed by vnear and
nearest[vnear]:
add e to F;
distance [vnear] = -1 // add vertex indexed by
for (i=2:;1i<==n;it+) /) vnear to Y.
if { W[i][vnear] < distance[i] ) { // for each vertex not in Y,
distance[i] = W[i] [vnear]; // update its distance from Y.
nearest|i] = vnear;}
H
i
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4.2 Analysis of Prim algorithm:

In Prim algorithm, it's important to observe that there are two distinct loops, each
comprising (n-1) iterations. The execution of instructions within each loop can be
regarded as a single execution of the fundamental process. With each loop having (n-
1) iterations, the complexity can be expressed as follows:

T(n)=2x(n-1) x (n-1) € O(n?)

4.3 Kruskal algorithm to find MST:

Assume that, we have an undirected weighted graph G(V,E,W). The fundamental
concept behind the Kruskal algorithm is that, at each stage, it chooses the edge with
the lowest weight that has not been selected yet from any location in the graph.
However, it refrains from selecting any edge which creating a cycle when combined
with chosen edges [14].

Example: The Kruskal algorithm will be applied to discover MST for the following graph:

First, the edges of the graph G are arranged in ascending order according to their
weights:
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Edge (1,3) [ (4,6) | (2,5 |(3,6) | (1,4) |(3,4) | (2,3) | (1,2) | (3,5) | (56)

Weight | 1 2 3 4 5 5 5 6 6 6

The edges with the least weight are chosen incrementally, and the edge is ignored if it
forms a cycle, even if it represents the lowest weight. Accordingly, the results are as
shown in the following figures:

© § o @E %i
® © ®. & oG

(a) (b) (c)

%

1
4
i)

(d)

We note that the weight of the graph G is W(G) = 43, while the weight of the resulting
tree is W(F) = 15. We also note that the resulting tree contains 6 vertices and 5 edges.
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Therefore, in general, any tree consisting of n vertices and (n-1) edges, if any edge is
added to it, will lead to the formation of a cycle.

In general, Kruskal algorithm to finding MST begins by generating distant sub-sets of
the set of vertices V. Then the algorithm tests the edges successively based on their
weights. For letters of equal weight, they are chosen randomly provided that they do
not form a cycle. If there are two vertices connecting through an edge in separate sub-
sets, it is included in the edge set F, and the two sub-sets are merged into a single set.
This procedure is iterated until all sub-sets become a single set [14].

We can summarize Kruskal algorithm for generating an MST as follows:

Inputs: n > 2, integer positive m, and an undirected weighted connected graph with
vertices (n) and edges (m).

Outputs: edges set F in a minimal generative tree of a graph.

Procedure:

vold kruskal ( int n_, int m, set of edges E, set of edges& F)
{
mdex 1, J;
set_pointer p,q:
edge e;
sort the m edges in E by weight in nondecreasing order;
F=q;
matial (n); / mmitialize n disjoint subsets.
while { number of edges 1in F 1s less than n-1 )
i
e= edge with least weight not yvet considerad ;
1, ] = indices of vertices incident upon e ;
p = find(1) ;
q = find(j) ;
if (lequal (p.q))
{

merge { p, q):
add e to F;

} endif
} /Y end while
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4.4 Analysis of Kruskal algorithm:
There are three points in this algorithm that must be taken into consideration:

1) The time required to arrange the edges: The Merge sort algorithm can be
used to arrange the edges, and its degree of complexity is O(m log m).
Therefore, the degree of complexity for this step is: W(m) € O(m log m).

2) The time spent within the while loop is predominantly determined by the
processing of distant sets, as everything else remains constant. In the worst-
case scenario, the loop iterates through all edges before exiting, which
occurs m times. Consequently, the complexity of this stage is determined
by: W(m,n) e O(m+nlogn).

3) The time required to give initial values for n-distant groups: The degree of
complexity required to give initial values is:

T(n) € O(n)
Since m is greater or equal to (n-1), the process of sorting and processing
distant groups overcomes the instatement time, which means that:
W (m,n) e O(m+ nlogn+mlogm)=0(mlogm)
It might appear that the worst-case scenario is independent of n, but
in this worst-case situation, every vertex can be connected to every
other vertex, leading to:
M n(n-1)
2

Hence, we can compose the most pessimistic scenario as follows:

W (m,n) e O(n, logn®) =0(n*2log n) = O(n” log n)

e 0(n?)

4.5 Comparison between Prim and Kruskal algorithms:
We obtained the following two-time complexity scores:

T(n)eO(n*)  Prime Alg orithm
W (m,n) e O(mlogm) Kruskal Alg orithm
In any connected graph, the relationship always holds:

n—lgmsM
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Therefore, for any graph whose number of edges m is close to the minimum (i.e. the
graph is sparse), the complexity of Kruskal's algorithm is O(nlogn), which means that it
becomes faster than Prim's algorithm. If the number of edges of the graph is close to
the highest (the graph is highly connected), the complexity of the Kruskal algorithm is
0O(n? logn), which means that the Prim algorithm is faster.

5. Conclusions:

In conclusion, this research has offered a comprehensive overview of key graph
algorithms. We have examined the underlying principles, advantages, and real-world
applications of each algorithm. DFS and BFS are fundamental tools for traversing
graphs, while Prim and Kruskal algorithms provide elegant solutions for finding
minimum spanning trees. These algorithms have been instrumental in solving a wide
range of problems, from finding efficient routes in transportation networks to
optimizing resource allocation in various industries. By understanding the intricacies of
these algorithms, researchers and practitioners can apply them effectively to address
complex problems in their respective fields. This research serves as a stepping stone
for further exploration and application of graph theory in practical scenarios. The
contribution of our research lies in providing a comprehensive overview and analysis
of key graph algorithms, including DFS, BFS, Prim algorithm, and Kruskal algorithm. Our
research contributes to the field of computer science and graph theory by:

1. Providing an educational resource: Our research offers an educational
resource that can help students, researchers, and professionals understand
these fundamental graph algorithms, their principles, and their
applications.

2. Comparative analysis: This comparison can help readers understand the
strengths and weaknesses of each algorithm and when to use them in
different scenarios.
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3. Contribution to the graph theory community: Our work contributes to the
ongoing discussions and research in the field of graph theory, helping
researchers and students build a strong foundation in this area.

In summary, our research contributes by offering a comprehensive and analytical
exploration of essential graph algorithms, aiding in the dissemination of knowledge
and fostering a better understanding of these algorithms in both academic and
practical contexts.
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