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 The process of estimating the parameters of regression is 
still one of the most important. Despite the large number of 
papers and studies written on this subject, these studies 
differ in the techniques followed in the process of 
estimation, whether they are classic or Bayesian. In this 
study, we developed a Bayesian technique employing a 
posterior-based mode to estimate parameters in multiple 
linear regression. The best multiple linear regression model 
for the data may be obtained based on the mean squared 
error after comparing the Bayesian posterior based on mode 
and the traditional method (ordinary least squares) by 
combining simulated and real data with a MATLAB program 
made especially for this purpose. The study finds that, 
compared to the traditional approach, the Bayesian 
posterior based on mode approach yields more accurate 
parameter estimates and In terms of the RMSE statistical 
criterion, the best results for estimating the multiple linear 
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regression model. 

 

1: Introduction 
Regression analysis is regarded as one of the most essential statistical approaches 
used by researchers to examine data in their respective domains, such as industry, 
biology, social science, and manufacturing, in order to achieve the best results (S. A. 
Obed, D. M. Saleh & D. I. Jamil. (2023)). this problem is answered by developing a 
correct formula for the link between the many phenomena represented by 
variables, and these variables are submitted to the regression formula in its various 
forms. The model of regression Formulas are extremely helpful in determining the 
direction of the explanatory variables with which we are dealing. It is done by the 
researcher, who is also aware of the influence range that these variables have on 
the response. Aside from the interpretation ratio of the regression model's 
contribution to explaining the link between the response variable and the 
explanatory variables, all of this is accomplished through the process of estimating 
the model's parameters (Geweke J. (2005)). 
 
To examine the relationship between the dependent variable and two or more 
independent variables, multiple linear regression models can be used. Before 
performing linear regression modeling, it is necessary to establish that each 
explanatory variable ha a relationship or correlation with the response variable, and 
that the relationship between the outcome variable and all independent variables is 
linear. The most common models are simple linear and multiple linear. 
 

The Bayesian technique is one of the strategies that may be used to estimate the 
parameters of a regression model (Philippe G, Alain D. and Mylene B., (2020)). The 
distinction between frequentist and Bayesian approaches is the parameter 
viewpoint. The Bayesian approach regards the parameters as a random variable, 
rather than a single value, as the frequentist approach does. 
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In practice, Bayesian procedures are widely utilized and accepted. The Bayes model 
is based on the computation of posteriors based on defined priors and the 
likelihood function of data (T. H. Ali & D. M. Salah (2021)). It is critical for 
researchers to correctly identify priors because incorrect priors might lead to 
skewed estimates or make posterior computation difficult. In this section, we will go 
over some of the most popular priors, how posteriors are derived using priors, and 
how prior selection effects posterior computation. In a Bayesian analysis, we begin 
with our model, which is the observed data distribution conditioned on its 
parameters (Goldstein, M., (1976)). This is also known as the likelihood function and 
is, for the most part, equivalent to the classic likelihood function. To update our 
model, we construct a distribution for the model's parameter(s), which is based on 
previous beliefs. This distribution is known as a prior distribution, and the 
parameters within it are known as hyper parameters. 

 

2: Linear regression  
One of the most straightforward and well-liked methods is linear regression. This 
statistical method is used for predictive analysis. Using linear regression, a 
continuous, real, or quantitative variable—such as sales, salary, age, or product 
price—is predicted. The linear regression algorithm gets its name from the fact that 
a dependent (y) variable and one or more independent (x) variables show a linear 
relationship. By using linear regression, which demonstrates a linear relationship, 
the value of the dependent variable is established in relation to the value of the 
independent variable (D.M. Saleh, D. H. Kadir, and D. I. Jamil (2023)). 
 

3: Multiple Linear regression model 
Multiple regression, also referred to as multiple linear regression, is a statistical 
method for predicting the outcome of a response variable using a number of 
explanatory variables. Representing the linear relationship between the explanatory 
(independent) variables and the response (dependent) variables is the goal of 
multiple linear regression. Since several explanatory variables are involved, multiple 
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regression is essentially an extension of ordinary least-squares (OLS) regression (T. 
H. Ali & D. M., Salah (2022)). 

It can be defined as follows when taking into account the multiple linear 
regression model with n observations and p independent variables:  

                             𝑦௜ = 𝛽௢ + 𝛽ଵ𝑥ଵ௜+. … + 𝛽௣𝑥௣௜ + 𝜀௜      …. (1) 
Where, for i=n observations: 
𝑦 =dependent variable. 
𝑥௜=explanatory variables. 
𝛽௢=y-intercept (constant term). 

            𝛽௣=slope coefficients for each explanatory variables. 
𝜀௜=the model’s error term (also known as the residuals).  
The ordinary least squares (OLS) method is used to estimate the parameters, 

which seeks to minimize the residual sum of squares, also referred to as the sum of 
squared variances between the observed and fitted responses(Chib, S., e tal 
,(2008)): 

                  
     …… (2) 

The least squares estimate of (  ) is obtained by minimizing eq. (2). 

                  𝛽መ = (𝑋்𝑋)ିଵ𝑋்𝑌           …. (3) 
                                                                                                                          

                               ….. (4) 

 

4: Bayesian Approach 
A different concept than that which underpins significance tests and confidence 
intervals informs the approach to statistics known as Bayesian statistics. The update 
of evidence is mainly the focus. A prior distribution of the quantities of interest is 
used in a Bayesian analysis to describe initial uncertainty. The likelihood presents a 
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summary of the current facts and the underlying assumptions. Following that, the 
prior distribution and likelihood can be combined to get the posterior distribution 
for the quantities of interest. With point estimates and credible intervals, which 
resemble conventional estimates and confidence intervals, the posterior 
distribution can be summarized. In Bayesian statistics, the prior distribution is a 
contentious topic. Even while ideas about effects can be represented as a prior 
distribution, it may appear unusual to combine factual trial data with an individual's 
subjective judgment. Therefore, using non-informative prior distributions to depict a 
position of prior ignorance is a typical practice in meta-analysis. In particular, the 
primary comparison demonstrates this. Prior distributions may, however, be applied 
to additional parameters in a meta-analysis, such as the degree of variation among 
studies in a random-effects analysis. In some cases, especially when there are few 
studies included in the meta-analysis, it may be helpful to include judgment or 
outside evidence. To determine how the outcomes vary from any set assumptions, 
it is crucial to conduct sensitivity assessments. (Box & Taio, 1992). 
 
4.1: Bayesian Approach for parameters estimation 
For the purpose of explaining the Bayesian method of estimation in general terms, 
after obtaining the subsequent probability density function for the parameters, the 

Bayesian estimates are the estimated values BpBB  ˆ,....,ˆ,ˆ
21 to p ,...., 21  

respectively, which makes the posterior probability density function at its maximum, 
i.e. finding the mode value of the posterior mode (Chang, T. & Eaves, D. M. (1992)). 
 

5. Methodology: 
 5.1: posterior mode based on Informative Prior Probability Distribution  
 We have the following model: 

  Where 𝑌 is the (𝑛 × 1)  response vector and 𝑋 is the 𝑛 × (𝑘 +

1) design matrix, 𝛽 is the (𝑘 + 1) × 1 parameters vector (regression coefficients), 

  XY
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and  𝜀  is the  ( 𝑛 × 1) vector and . The normal 

conjugate prior density function of the parameters  defining the normal 

distribution is known in this situation as follows (Martz, H. F. & Krutchkoff, R.G. 
(1969))& (Harrison et al., 1989): 

First case if )( 2  is known 

 

The kernel of the prior probability density function is: 

)4(...0,)()(
2

1
exp)( 2

0002




 


 


 Mf   

Where:   
: Informative Prior matrix. 
 

: mean of the Prior distribution. 

 : Variance and covariance matrix of the Prior distribution. 

As for the likelihood function, it is (Raftery, E., Maigan, D. & Hoeting, J.A. (1997)): 
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   The function (4) can be combined with the function (5) to generate the posterior 

probability density function of the parameter vector ( ) using Bayes' theorem as 

follows (Zellner, A. (1971): 

),()(),( 2 LfYf   
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Second case if )( 2  is unknown 
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According to the probability function below, the vector of the prior parameters is 
distributed in a multivariate-normal distribution (Shelemyahu Z., (1971)): 
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Additionally, it is expected that the probability function given below describes the 

)( 2  distributed inverse gamma distribution: 

Where: 

00000
2
00 YXYYSv    

00000 1 pnknv   

The following formula is used to construct a prior probability density function for 

the parameters ),( 2 : 

)()(),( 222  fff 
 

                    
….(10) 

As for the likelihood function, it is: 
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We determine the posterior probability density function for the parameters using 
Bayes' theorem, and it looks like this (O'Hagan, A. (1973)): 
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Therefore, the kernel of a normal-inverse gamma is represented by the formula 
(11). The formula (11) can be explained as follows: 
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So, according to (Gero W. and Thomas A. (2009)), the posterior probability density 
function is as follows: 
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The posterior probability function of the parameter vector is obtained by integrating 

the function (12) with respect to the parameter )( 2  as follows (Box, G.E.P, & Tiao, 

G. ,(1992)): 
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The (Multivariate -t-Distribution) formula (13) stands for this. 

 

 

]
2

,
2

[~
])(,)ˆ([

]
2

,
2

,)(,)ˆ([ 2

1
0

2

2
1

0
B

BB

B
B Sff

GI
XXMSfMVN

Sff
XXMGIMVN














 

)14(.....0
2

exp.][
]

2
[

]
2

[
)( 2

2

2
)1

2
(

2

2

2

2 



















 B

f

f
B

Sf

f

Sf

Yf
 

For the parameter )( 2  that represents the mode of the posterior probability 

density function (inverse gamma distribution), a Bayesian estimator may be created 

to )( 2 : 
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6: Application-side (simulation, real data) and outcome 
To compare the efficiency of the Bayesian based on posterior mode method with 
the classical method of ordinary least squares in estimating a multiple linear 
regression model, estimation methods were applied first using the simulation 
method to simulate the greatest number of situations that can be encountered in 
practice in order to achieve more general results, and then using real data.  
 
6.1: Description and analysis of simulation experiment  
Experiment simulation is used to take the combination under consideration and 
repeat it (1000) times for different instances, as seen below: 

),(

),(
)(

2

2
2






Yf

Yf
Yf 



 

QALAAI ZANISTSCIENTIFIC JOURNAL 
A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil,   Kurdistan, Iraq 

Vol. (9), No (1), Spring 2024 
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print) 

 

1529 
 

1- There are three sample sizes used: 50, 100, and 200. 
2- Standard deviation, which can be (1, and 5). 
3- The explanatory variables independently from a normal distribution, where k is 

number of the explanatory variables, which can be (2, 5, and 10). 

Table 1:  results of Simulation experiments for Bayesian posterior mode and OLS 

 Sample size(n) 
       OLS Bayesian posterior mode 

RMSE RMSE 

σ = 1 

k=2 

50 8.0466 3.2256 

100 8.7734 3.8777 

200 8.4091 2.6913 

k=5 

50 8.9601 5.2086 

100 9.1328 4.1984 

200 8.9786 4.2774 

k=10 

50 8.9467 5.1212 

100 9.1216 4.1335 

200 8.9783 4.2228 

σ = 5 

k=2 

50 9.3886 4.6845 

100 9.9600 4.5548 

200 9.7276 4.3763 

k=5 

50 10.1968 6.2432 

100 10.3552 5.4227 

200 10.2237 5.4918 
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From Tables (1) we noted all cases the Bayesian posterior mode approach of 
the value    (RMSE) is less than the classic approach (OLS). 
 

6.2:  Descriptive and analysis of real data 
Therefore, to apply the Bayesian approach and classical regression methods, data 
related to studies of ammonia-to-nitric acid oxidation. The data comes from a study 
by Rousseeuw and Leroy (1987). It was used to estimate multiple linear regression 
models. 
The variables used in the study were described as follows: 
First, the response variable: 
Yi: stackloss. 
Second: Explanatory variables (independent): 
X1: The pace. 
X2: temperature. 
X3: acid concentration. 

Table 2: presents statistical descriptions for all variables. 

 

 
 
Next, perform a multiple regression analysis using either the frequentist or OLS 
methods to see if all independent variables have an impact on the dependent 
variable. 

Table 3: Multiple Regression Model Fitting (O LS) approach 

k=10 

50 9.8444 5.5316 

100 10.3437 5.3765 

200 10.1968 6.2432 

variables y x1 x2 x3 

mean 17.65 57.90 21.15 86.05 

Std. Deviation 10.419 13.262 3.233 5.385 
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Model Unstandardized 

Coefficients 

Standardiz

ed 

Coefficient

s 

t Sig. Collinearity 

Statistics 

Tolerance 

B Std. Error Beta 

(Constant) 

x1 

x2 

x3 

-51.605 19.639  -2.628 .018   

.117 .148 .149 .788 .442 .390 2.565 

2.343 .644 .727 3.639 .002 .347 2.881 

.150 .252 .078 .597 .559 .818 1.222 

    When we contrast these variables' p-values with a level of significance (α = 0.01), 
Demonstrating that these variables' p-values (x2) are smaller than (0.01) leads to 
the conclusion that they had an impact on the quantity of (y) values in Table 3. This 
indicates that all the estimated models do not suffer from the problem of 
multicollinearity between the explanatory variables because the values of (VIF) are 
less than (10). 

                   Table 4: Model Summary 

Tble (4) R-squared indicates that the fitted model explains 77% of the variation in 
(y). Since the corrected R square is 73%, it is more appropriate for comparing 
models with different numbers of independent variables. Because the value of 
(D.W.) calculated for the estimated models is within the range of accepting the null 
hypothesis, which is mentioned, the results shown in Table 4 show that none of the 
estimated functions have enough evidence to support the conclusion that there is a 
problem with autocorrelation between the values of the residuals. There isn't any 
first-order autocorrelation in the residual values. 
 
 
 

R Square Adjusted R Square Std. Error Estimate Durbin-Watson 
.778 .737 5.346 2.869 
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Coldfield-Quandt test  
According to this test, we do not have sufficient evidence to conclude that 
heteroscedasticity is present in the regression model. Based on the F-Cal value, it is 
equal to (1.0181), which is less than the F-tab value, which is equal to (1.65). 
 

Table 5: ANOVA table 

Model Sum of Squares df Mean Square F Sig. 

Regression 1605.274 3 535.091 18.723 001  

Residual 457.276 16 28.580   

Total 2062.550 19    

Table (5) displays the analysis of variance for the ANOVA table. The outcome shows 
that the sum squares for the regression, residual, and total are, respectively, 
(1605.274, 457.276, and 2062.550). Additionally, the F is 18.723, and the mean 
square for the regression and residual is 535.091, 28.580. 

  Table 6: Tests of Normality 
 Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

y .211 20 .020 .832 20 .033 

x1 .229 20 .007 .837 20 .041 

x2 .197 20 .041 .891 20 .028 

x3 .220 20 .012 .910 20 .062 

      The understanding of the data's normalcy is one of the basic assumptions prior     
to analysis. This in Table 1 can be enhanced. 
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Table 7: results of real data for Bayesian posterior mode and OLS 

Approaches RMSE R-Square 

Classic Approach OLS 5.347 0.77 

new Approach Bayesian posterior mode 2.185 0.92 

Table 7 shows the following information: 
The technique (Bayesian posterior mode) has a smaller root mean square error 
(RMSE) than the traditional approach. 
 

 7: conclusions  
The study looked at the data, interpreted it, and came to a variety of conclusions. 
The most important ones are highlighted in the list of conclusions below: 

1- For estimating parameters in the multiple linear regression model according 
to the statistical criterion, RMSE, the Bayesian technique based on posterior 
mode produced the best results. 

2- A positive indication was obtained by the Bayesian method based on 
posterior mode in real data: a high coefficient of determination R-square. 

3- The posterior mode-based Bayesian technique can also be used to estimate 
parameters for multiple linear regression models. After being used in all 
scenarios, a simulation study yielded favorable results. 
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 ۆب وازɃش  یماهبن رهس هƿ  ەوهپشت ینان Ƀکارههب  هب یزییبا یکɃ کیکنه ت یدان Ƀپەرهپ
  ەیوهن یژɄ (تو داەییفر ǃɃیه هیکشهپاش  هƿ کانەرهت Ƀپارام ی؊ندنӂ مهخ

 ) کردنەوɃھاوش
 پـوخـتـه: 

ƿمه  ƿɃیکǄئ  دا،ەیهوهنۆɃکیکنهت  همɃپەرهپ  زمانهیب  یکɃش  هک  داɃوازɄە دواو  هب  مادار هبن  یک  
باشتر داەییفر  ǃɃیه  هیکشهپاش  هƿ  کانە رهتɃپارام  ی؊ندن ӂ مهخ  ۆب  تɃنɃهەکاردهب   ی ɄƼدۆم  نی. 

  ستەدهب  ندە مامناو  هی شۆچوارگ  هǄهیه  ه ب  ستنهپشتب  هب  هنگڕە داتاکان    ۆب   ەییفر  ǃɃیه  هیکشهپاش
 ن یمتره (ک  یدیقƼهت  یواز Ƀو ش  وازɃش  یماه بن  رهسهƿ  یزییبا  ەیوهپشت  ی راوردکردنهب  یدوا  تɄنرɃبه

بییئاسا  هیشۆچوارگ ھاوش  یکردنهǄک Ƀت  ه)    ی کهیهرنامهب  هڵگهƿ  کانهنیقهاستڕو    کانە کراوە وɃداتا 
MATLAB  تو  ەدروستکراو  هستهبهم  مهئ  ۆب   یتهبیتا  هب  هک .Ʉراورد هب  هب  ،هک   خاتەدیرەد  هکەوهنیژ  

ƿهڵگه  Ʉهت  یبازڕƼیزیهب  ەیوهپشت  ،یدیق  ƿیماه بن  رهسه  Ʉش  یبازڕɃمهخ  واز ӂی وردتر   ی؊ندن  
 .تɃنɃ هەد ستەدهب  کانەرهتɃپارام

 

يزي باستخدام أسلوب لاحق بناءً على الوضع لتقدير المعلمات في الانحدار  تطوير تقنية ب
) الخطي المتعدد (دراسة المحاكاة  

   :الملخص
المعلمات في الانحدار الخطي المتعدد. في هذه الدراسة ، قمنا بتطوير تقنية بيز باستخدام الوضع الخلفي لتقدير  
خطأ بعد مقارنة متوسط  ل  تربيعيجذر  يمكن الحصول على أفضل نموذج انحدار خطي متعدد للبيانات بناءً على

الا الصغرى  (المربعات  التقليدية  والطريقة  الوضع  على  بناءً  البيزية  بين عتياديةالخلفية  الجمع  خلال  من   (
المصمم خصيصًا لهذا الغرض . توصلت الدراسة إلى أنه   MATLAB والحقيقية مع برنامجالبيانات المحاكاة  

 .يزية بناءً على نهج الوضع ينتج عنها تقديرات معلمات أكثر دقةلنهج التقليدي ، فإن الخلفية البمقارنة با
 


