

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

BRAIN-BASED LEARNING AS AN APPROACH FOR IMPROVING EDUCATIONAL PRACTICE IN KURDISTAN REGION: AN EMPIRICAL STUDY IN PERSPECTIVE OF EDUCATIONAL PLANNING

Asst. Prof. Dr. Mohammad Sadik

Department of General Education, Lebanese French University - Erbil. mohammad.sadik@lfu.edu.krd

ARTICLE INFO

ABSTRACT

Article History:

Received: 25-1-2016 Accepted: 30-4-2016 Published: 31-5-206

Keywords:

Brain-Based Learning, Educational Planning, Kurdistan Education, Educational Practice in Kurdistan Brain-based learning refers to teaching methods, lesson designs, and school programs that are based on the latest scientific research about how the brain learns, including such factors as cognitive development-how students learn differently as they grow in age, and become mature socially, emotionally, and cognitively. This study aims mainly at knowing: (1) to what extent educators know the strategy of Brain-Based learning, (2) their ability to apply the strategy, (3) the significant differences between the responses of the educators in both dimensions cognition and application.

In order to achieve the above mentioned aims, the study hypothesizes that HO means there is no significant differences in response to educators up on the questionnaire items in both dimensions: cognition and application, collective and individual. The basic conclusion the study arrived at is: Educators do not have any specific knowledge, practice or training in regard to the so called Brain-Based learning strategy. This was obvious through the results, which were at a moderate level (3) in both cognitive and application Finally, the study ended with dimensions. some recommendations for pedagogical implications and some suggestions for further studies.

I. STATEMENT OF THE PROBLEM

This paper is an attempt to find out to what extent educators in the region deal with the strategy of the so called Brain Based Learning in the sense of cognitive and implementation dimensions. This strategy is considered as one of the effective approach for improving educational practice in Kurdistan Region. It takes into consideration that the Ministry of Education initiated to change the educational practice in coherence with

the general planning of the region for social and economic development. Thus, this study aims to find out what may be needed to implement Brain Based Learning successfully and effectively, through the practical solutions for many specific situations in the Region education system.

II. SIGNIFICANCE OF THE STUDY

The significance of this study is twofold, the first being theoretical and the other being practical. This paper demonstrates the importance of knowledge in regards to Brain Based Learning strategy. On the other hand, it is designed to find out the shortcomings of the implementation of the strategy.

The Educational Planning process as forecasting for the future success of students requires a careful understanding of the student population whereas Brain-Based Education is an important factor for the success of the process. Brain-Based Education is a complicated process requiring planners' attention to many educational and psychological factors in addition to other social, economic, political and demographic factors. Brain-Based education is based on a two-tier model, which includes teaching and learning methods that premised the latest scientific findings about how the brain functions and learns, and how students learn changes as they grow emotionally, cognitively, socially and become more mature.

On the learning tier, brain-based education is inspired by the fact that learning can be enhanced if educators know what and how they reach subject matters using the new science of learning, rather than continue teaching on the past conjectures about the learning process. On the other hand, teaching tier, brain-based education are motivated by instructional practices and procedures that are based on the neuroscience of learning including scientific findings that are used to explain educational programs and strategies (The Glossary of Educational Reform, 2013).

Brain-Based education is a model which allows educators to see connections between brain functions and student learning. It begins with the notion, "Everything we do use our brain; let's learn more about it and apply that knowledge." Hence, each instructor ought to be professional enough to know what would be the best strategy as a best practice for his/her students. He or she should asses the students active participation in the learning process, and assure that they are able to apply. Further, since brain-based approach is about knowing and developing knowledge scientifically, educators can use this approach to determine why one teaching/learning strategy is preferred over another to help certain group of students (Jensen, N.D). For educators to know how the characteristics of the way in which girls and boys learn, enables them to use methodologies that contribute to the students' success.

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

Brain-Based learning theory facilitates understanding the functions of the brain. Research indicates, as long as the brain is not scripted, it works better and fulfills its normal functions. Brain-Based education has helped to devise a new discipline as "Educational Neuroscience". It is an across-the-border approach to instruction using scientific inquiry from neuroscience and highlights how the brain learns naturally (Ramkarishan and Annakodi, 2013).Further, Brain-Based education is a paradigm that has spellbinding implications on student learning, because it is an approach that perceives how students' brains may learn and synthesize knowledge with minimum difficulty. Further, our understanding of the discipline of neuroscience psychology, biology, and sociology which are germane to the relationship between the brain and learning, expands this awareness of how student's brain processes new information (Jensen, 2000 :2 &6).

III. AIMS OF THE STUDY

The questions which the study aims to answer are the following:

- 1. To what extent do educators know the strategy of Brain-Based Learning?
- 2. To what extent do educators apply the strategy?
- 3. Are there any significant differences between the responses of the educators in both dimensions, cognition and application, according to the following variables: Gender (Y1), Age (Y2), educational experience (Y3) and level of Scientific Degree (Y4)?
- 4. Are there significant differences among the responses of the educators in both dimensions, cognition and application, collectively among all the (Y) variables?

IV. HYPOTHESIS OF THE STUDY

The researcher used the following hypothesis:

HO means no significant differences in response to the educators up on the questionnaire items in both dimensions, cognition and application, collectively and individually. According to the research variables H (Y1) which means there are significant differences in response to the educators up on the questionnaire items in both dimensions, cognitive and application, collectively and individually.

V. LITERATURE REVIEW

CHARACTERISTICS OF THE BRAIN

The brain is divided into two hemispheres—the left and the right. This is better known as lateralization, which is a localization of function or activity on one side of the body in preference to the other side. Since 1960s, psychologists and neuroscientists have been studying how lateralization had affected brain function. However, it has always been

QALAAI ZANIST JOURNAL A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

encouraged to use your whole brain. This way you get the benefits of both hemispheres (Gemma, 2014).

Brain is known to be the "greediest" organ in the human body. It is the most energy hungry organ in human body. It needs a constant supply of carbohydrates, vegetables and low-sugar fruit provide good sources of carbohydrates for energy production (McCabe, 2014). When rested, the brain consumes glucose (the sweet colorless soluble dextrorotatory form that occurs widely in nature and is the usual form in which carbohydrate is assimilated by animals) together with oxygen ten times more than the rest of the body (Wolf, 2001). The brain when active, consumes 20 percent of all the oxygen and most of the sugar we take in. It is made up of 60 percent of fat, and functions on 20 watts of electricity (McMahon, McMahon and Romano, 1990; McCabe, 2014). Although, the brain constitutes a little more than two percent of the whole human physical weight, it is accountable for twenty percent of the body's energy use (Wolf, 2001). It is the most complicated, arcane and potent entity in the human body. It is the only organ that is able to study and learn about itself. When nourished by a hygienic and healthy environment. An active brain can stay active for more than hundred years.

To better understand how the brain functions better, it is crucial to evaluate the brain magnitude from different aspects as it ages. In the past, the common belief was that the larger the brain, the more astute it was (Cohen, 1988). However, modern science sheds light on the fact that difference in the brain magnitude amongst the human beings does not correlate to intellectual capabilities. Although, men have relatively larger brains than women, woman's brain is 10 percent smaller than man's brain. Having said this, due to a larger corpus callosum women's brain is 20 percent more active than men's brain. Furthermore, there are no discrepancies in the overall intellectual ability between the two genders (Cohen, 1988: 5&6; Kommer, 2006).

Everything we know about the brain, such as higher-level thinking and intuition are capabilities that exist in the brain at birth. If properly nourished, during the first eight years of life, the brain would maintain its healthy status and develop normally. The neo-cortex, which is the dorsal region of the cerebral cortex, consists of about twelve to fifteen billion neurons. Every neuron is able to interact with other neurons through its elongated limbs known as dendrites. Most of these lines of communication are created in the first eight years of life (Davies, 1996). Generally children at this age are in school, which means these lines of communication are strengthened while students are engaged in the learning practices.

The brain directs the body functions. It controls blood flow, digestion, thoughts, body movements, heartbeat, sensation, speech, and breath. Consequently, anything that the brain performs produces an action either mentally or physically. The brain guides and

communicates with every organ through the glands of the endocrine system (Cohen, 1988:p.14).

Ref: https://www.pinterest.com/explore/whole-brain-learning/ (2015).

Brain neurons have different functions. The neurochemicals that are stimulated for exigencies, for instance, might move through the whole structure (Cohen, 1988, p.11). In viewing its histological (tissue structure or organization) discrepant configuration, we know that brain cells are not functioning independently from each other; Therefore, neural designs are structured into a chain of command with the neural functions at a level deeply contributing to the functions of other neural activities.

Every part of the brain has a major task to perform in order to keep the body healthy. The lowest levels of the brain are accountable for controlling and expressing the fundamental aspects of behavior. They control the necessary survival behaviors, such as eating, physical, and sexual activities. The higher levels of the brain are responsible for changing these behaviors to an objective approach. Any function of the brain at any level by any part affects the functions of the brain on other parts. The human brain is a mixture of one large system put together (Bennet, 1977, p. 3 & 28).

VI. GIRLS AND BOYS LEARN DIFFERENTLY

In recent decades educators have become savier than ever before about how girls and boys learn, act, and interact differently. Research shows that the differences in the way in which girls and boys learn are real and teachers must emphasize teaching methodologies with regard to how the brain of the two genders learns and how human multiple intelligences should be studied and integrated into the learning styles of each gender (Gurian, 2001, p. 9).

Each gender has a different approach for learning. Research indicates a difference in the learning styles might have been based on the learning modes—modes that one gender

prefers. In general, for girls, the mode they prefer is to conceptualizing and experimenting, which leads them to a discovery-type investigation, while boys lean towards the use of assimilating learning style—a style that enables them to conceptualize and observe (You, 2010). The two genders are intrinsically different and the differences are in neurological development, biochemistry, and brain anatomy.

VII. LEARNING STYLE OF THE GIRLS

In the last four decades, there had been a good number of scholarly works that shows how girls learn. Generally, they are better in using their left side of the brain. Although girls are able to do logical thinking, they seem to use various decision-making methods applicable to different situations to solve problems. Girls may seek consensus to avoid conflict (NCETM, 2010). They are inductive learners and are better in developing concrete examples. They have a better grasp on oral expression and writing. During the process of learning, girls generate more words than boys, and are better listeners (Gurian, 2001, p. 44-46). Traversy characterizes girls' brains as:

- Having stronger neural connections in temporal lobes allowing better sense of memory, better listening and distinctions in vocal quality.
- Having a larger hippocampus which gives girls advantages in language arts.
- Having a more active and earlier developing prefrontal cortex which helps them to control impulsivity better than boys.
- Having more serotonin in the bloodstream and brain, which is known for promoting feelings of well-being.
- Using more of their cortical areas for verbal and emotive functioning (Traversy, 2009).

Girls tend to enjoy practicing skills. They prefer to have methodologies, well defined examples, and clear guidance to use them. They pay more attention to specific detail—and give more time to produce right answers and get the task completed (NCETM, 2010). Girls tend to be more socially dependent than boys. This requires a classroom environment that encourages group work so that girls can use their social traits while sharing with and learning from other students. The gender-biased classroom environment, traditionally, has had negative impact on female students since boys have almost always had more attention and time from teachers. Therefore, a gender-neutral classroom environment in which girls are given the time and attention needed for their participation and success (Mann, 1994). Further, girls perform better when they manipulate objects and are able to see concrete reasoning. They like to put the learned ideas in a clear version and wider perspective, and enjoy being more detailed; they usually are better in dealing with emotion than boys (Traversy, 2009).

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

VIII. LEARNING STYLE OF THE BOYS

Research shows that boys are better in using the right side of the brain, and at an early age, boys are more likely to be disruptive in the educational environment. They often do not follow instruction to learn. They can easily get bored during classroom instructions. Generally, boys have impulsive responses to just about any problem by lashing out at unpleasant occurrences. Although, traditionally, boys have been taught not to show emotion, when they are upset their emotional state can easily trigger physical aggression. The inability in boys' approaches for handling their emotion occasionally leaves them with painful experiences (Kommer, 2006). Perhaps, we need to do more to support boys and their unique hardwiring in educational settings. The organization of the educational system, in general, does not help boys' learning styles (Schneider, 2013).

The characteristics which boys display in school sometimes are mixed with aggressive behaviors. Among them are those who may show less desire for learning (Carrier, 2009). They seem to be less concerned about consequences and undesirable results. However, when they are focused during the process of learning, after a few examples, they are more likely to learn quickly and retain information for later use. (NCETM, 2010). Some boys' characteristics are as follows:

- Boys use more of their cortical areas for spatial mechanical functioning and; therefore, have less space available (about half) than females for verbal emotive functioning
- This bias towards spatial mechanical functioning leads boys to experiment with moving objects, arms, and legs, and self through space.
- Boys do not use words and emotive content in the same way as girls they may be more visual.
- In addition to less serotonin, boys also have less oxytocin, a chemical reputed to help with human bonding (that stimulates production of milk) and which make them more impulsive physically.
- Boys' brains are structured not to be as efficient as girls in multitasking and tend to compartmentalize their learning (Traversy, 2009).

The effects of these brain-based learning characteristics are readily apparent to all teachers who have observed boys in their classrooms:

The male brain is set to renew, recharge, and reorient itself by entering what neurologists call a rest state. The boy in the back of the classroom whose eyes are drifting toward sleep has entered a neural rest state. It is predominately boys who drift off without completing assignments, who stop taking notes and fall asleep during a lecture, or who tap pencils or otherwise fidget in hopes of

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

keeping themselves awake and learning. Females tend to recharge and reorient neural focus without rest states. Thus, a girl can be bored with a lesson, but she will nonetheless keep her eyes open, take notes, and perform relatively well. This especially is true when the teacher uses more words to teach a lesson instead of being spatial and diagrammatic. The more words a teacher uses the more likely boys are to "zone out," or go into rest state. The male brain is better suited for symbols, abstractions, diagrams, pictures, and objects moving through space than for the monotony of words (Traversy, 2009).

Boys are better at abstract and ratiocination (the process of exact thinking). When engaged in learning, they generally prefer silent environments. They also seem to like moving around to refresh and stimulate their brains, which also helps them to ease their impulsive behavior (Traversy, 2009). Boys enjoy outdoor learning and do better when engaged in field experience projects.

The Process of Thinking

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

IX. BRAIN-BASED EDUCATION COMPONENTS

Teachers should challenge students to adapt their brains and to maximize the use of their brain—particularly to find ways for students to practice using areas that are not their natural learning styles (Lombardi, 2008). For example, in kindergarten or elementary classes, girls might be given spatial tasks while boys are given more verbal challenges.

Instructors at any level should always remind students that the brain is a very flexible and adaptive element that grows with learning. As stated by Gusman, the brain "functions best with adequate time, the absence of threat, immediate feedback, dynamic interaction, with global context as well as delineation of parts, and in a state of relaxed alertness" (Gusman, 2005, p. 1). It functions on multiple levels in different ways concurrently. The brain is more relaxed and engaged during social engagement, cooperative learning and games (Lombardi, 2008). In the author's experience this relaxed cooperative learning is also evident when the Socratic Method of teaching is applied.

Additionally, brain-based education allows instructors to use multi-disciplinary concepts, multiple intelligences, and the VAK (visual, auditory, and kinesthetic) learning styles. In this approach, teachers emphasize a student's higher mode of learning and dissemination of information (Richardson and Arker, 2010). This method helps teachers to critically examine information before it is delivered to students. Establishing connections between previous experience and newly learned knowledge is crucial to any meaningful learning. Brain-based instruction helps teachers and students to make these connections (Kahvaci, AY, 2008). It may be helpful for teachers to consider the following about the brain:

- The brain is a multifunctional workstation.
- Teaching engages neuroscience, brain function, psychology and sociology.
- Any subject matter across the curriculum should be taught within the frame of brainbased learning.
- Gender differences in learning should be taken into consideration in teaching.
- Both hemispheres of the brain and their general characteristics should be taken into consideration when teaching students.

As a result, brain-based education, as a scientific approach to learning, is a quality improvement in teaching the brain in various multidisciplinary fields of the academy and science.

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

X. METHODOLOGY1. SAMPLE OF THE STUDY

The sample consists of 92 responses (58 Males and 34 Females) from residents of Erbil City, Iraqi-Kurdistan, who hold Bachelors, Masters or PhD and are divided into the following category in respect to their experience:

- Less than 5 Years
- 5-10 Years
- 11 15 Years
- 16 20 Years
- And over 20 Years

The sample is chosen randomly.

2. DESCRIPTION OF THE QUESTIONNAIRE

The researcher utilised a descriptive methodology and constructed a reliably valid questionnaire, consisting from 19 items, which measures both dimensions, cognitive consisting from items 2,4,5,6,7,8,12,13,14,15 and the application dimensions consisting from items 1,3,9,10,16,17,18 and 19.

The researcher used scales of 1 - 5, with 1 being the lowest degree and 5 being the highest, except for item 7, which used 5 as the lowest and 1 as the highest in order to insure the validity of the responses and indicate the responder's seriousness in answering the questionnaire.

3. VALIDITY OF THE QUESTIONNAIRE

A group consisting of scientific academics, educational planners, psychologists and English Linguists, were to check the validity of the questionnaire items. According to their level and response, the researcher modified some items. Overall, the degree of the acceptance by the panel was 80%.

4. RELIABILITY OF THE QUESTIONNAIRE

Cronbach, Alpha Co-efficiency is used to check the reliability of the questionnaire, the percentage of the reliability was 71%, thus, indicating a satisfactory level of standard.

5. THE STATISTICAL TOOLS

The following tools are utilised: Cronbach, Alpha Co-efficiency, T test, Z test and ANOVA one way for the independent sample, F test and Least Significant Difference (LSD) for the multiple significant differences.

XI. RESULTS OF THE STUDY

The results will be demonstrated according to the research question:

- To what extent do educators know the strategy of Brain-Based Learning?
- To what extent do educators apply the strategy?
- Are there any significant differences between the responses of the educators in both dimensions, cognition and application, according to the following variables: Gender (Y1), Age (Y2), educational experience (Y3) and level of Scientific Degree (Y4)?
- Are there significant differences among the responses of the educators in both dimensions, cognition and application, collectively among all the (Y) variables?
- 1- To what extent do educators know the strategy of Brain-Based Learning? The arithmetic mean for the items which reflect the cognitive dimensions for the males and females, except item 13, where the above hypothetical arithmetic mean, which was 3. The mean was between 4.1379 – 2.313 for males and 4.2059 – 2.5882 for females. Table 7 and 8 illustrates the above results.

The arithmetic mean for items which reflect the application dimension for males and females was between 4.3966 - 3.60 for males and 4.0882 - 3.4706 for females. Table 1 and 8 illustrates the above results.

- 2- To what extent do educators apply the Brain-Based strategy?
 - Through the use of the Z test for the two independent variables (a=0.05), the level of significant was higher which indicates that there are no significant differences between females and males in the items of the questioner (1, 2, 3 to 19) collectively and in both of the dimensions, because the value of the significance for all the items was above the significant level, (a=0.05) thus, the HO hypothesis is accepted. Table 2 illustrates the above results.
- 3- Are there any significant differences between the responses of the educators in both dimensions, cognition and application, according to the following variables: Gender (Y1), Age (Y2), educational experience (Y3) and level of Scientific Degree (Y4)?
 - 3.1 Through the use of T-test, the results relating to Y1 for two independent samples, there were no significant differences between both genders, on the items ranging from 1 19. The value of significance was higher than 0.05 (the level of significance). Accordingly, no hypothesis was accepted.

- 3.2 Through the use of ANOVA one way, the results relating to Y2, the results indicated that there were no significant differences among the educators response. On the items ranging from 1 to 19. In both between groups and within groups, which indicate that there were no significant differences between both dimensions, cognition and application, and on the other hand, there are no significant differences among all age categories, because the level of the significance was higher than 0.05 (a=0.05). According to this result no hypothesis was accepted. Table 3 illustrates the above results.
- 3.3 Through the use of ANOVA one way, the results relating to Y3, indicates that there were no significant differences among the educators' responses in relation to the categories of experience, between and within groups in both dimensions. As the significance the level of significance was higher that (a=0.05). Accordingly, no hypothesis is accepted. Except, item 11, where differences were found between category (5-10 and 11-15) and (16-20) in favour of the first two categories. The significant values for the first two categories were lower than the significant value (a=0.05), thus H1 was accepted. The differences may be due to the responders in the first two categories where more realistic, confident and assured for the necessity of the learners participation. In more realistic learning situations, related with their life experiences. Table 4 and 5 illustrates the above results.
- 3.4 Through the use of ANOVA one way, the results relating to Y4, indicate that there were no significant differences among the educators' responses in relation to the categories of scientific levels, between and within groups in both dimensions. Since the level of significance was higher that (a=0.05). Accordingly, no hypothesis is accepted. Except, item 4, in which there was significant differences between responders with PhD and Master's degree, in favour to the responders with a PhD. The differences may be due to the fact that the holders of a PhD are more orientated with theoretical instructional strategy. Table 6 and 7 illustrate the above results.
- 4- Are there significant differences among the responses of the educators in both dimensions, cognition and application, collectively among all the (Y) variables?
 - 4.1- Through the use of F and Z tests, there were no significant differences among the responders in both dimensions collectively and all Y variables (Y1, Y2, Y3 and Y4 Collectively) because significant value was higher than the level of significance (a=0.05) which indicates that there are no significant differences between and within groups in all the variables.

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

XII. CONCLUSIONS AND RECOMMENDATIONS

From the analysis of the findings, it seems that educators do not have any specific knowledge, practice or training in regard to the so called Brain-Based Learning strategy. This was obvious through the indicated results, which was at a moderate level of (3) in both cognitive and application dimensions.

The moderate level (3) maybe due to normal and very basic knowledge obtained in time of formal studies in Universities or through normal everyday practice.

Accordingly, the researcher can recommend the following:

- 1. Teaching preparation programmes within universities should include appropriate competence and knowledge with regard to Brain-Based Learning
- 2. Students within educational colleges should be trained and taught about Brain-Based Learning Strategy.
- 3. Educators in the Erbil Province should be continuously trained and collaborate with educational colleges with regard to Brain-Based Learning Strategy.
- 4. The Directorate of Education in the Erbil Province should take a more proactive role in advocating, supporting and funding workshops and seminars to promote Brain-Based learning strategy.

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

XIII. LIST OF TABLES

Table 1 – Illustrates the Arithmetic Mean for Cognitive and Application Dimension,

in relation to their Gender						
	y1	Ν	Mean	Std. Deviation		
x1	Male	58	3.60	1.184		
	Female	34	3.9118	1.0260		
x2	Male	58	3.3103	1.0630		
	Female	34	3.4412	1.0785		
x3	Male	58	3.5000	0.9224		
	Female	34	3.4706	0.9288		
x4	Male	58	3.4310	1.0779		
	Female	34	3.6176	1.0155		
x5	Male	58	3.6552	0.9282		
	Female	34	3.8824	0.8796		
x6	Male	58	4.1207	0.8999		
	Female	34	4.0882	1.0551		
x7	Male	58	2.3103	0.9024		
	Female	34	2.5882	1.2338		
x8	Male	58	4.1379	1.1153		
	Female	34	4.2059	0.8449		
x9	Male	58	3.9310	1.1526		
	Female	34	4.0294	0.7171		
x10	Male	58	4.1034	0.9117		
	Female	34	3.9706	0.7171		
x11	Male	58	4.3966	0.7479		
	Female	34	4.0588	1.2778		
x12	Male	58	3.5172	0.9955		
	Female	34	3.5588	1.0500		
x13	Male	58	3.0517	0.9809		
	Female	34	2.9118	0.9651		
x14	Male	58	3.7414	1.2918		
	Female	34	3.7941	1.1222		
x15	Male	58	3.7759	0.7503		
	Female	34	3.4118	1.0479		
x16	Male	58	4.0345	0.8577		
	Female	34	3.7647	0.9865		
x17	Male	58	3.9483	0.9257		
	Female	34	4.0588	0.8507		
x18	Male	58	3.7241	0.8745		
	Female	34	3.6765	1.1206		
x19	Male	58	4.0690	0.9526		
	Female	34	4.0882	0.9001		

QALAAI ZANIST JOURNAL A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

Table 2 – illustrates the Z – Test for the two independent samples (males and females) in regards to the variations

			Sig. (2-	Mean
Y1	Z	Df	tailed)	Difference
x1	-1.2649	90	0.2092	-0.3083
x2	-0.5668	90	0.5723	-0.1308
x3	0.1472	90	0.8833	0.0294
x4	-0.8186	90	0.4152	-0.1866
x5	-1.1550	90	0.2511	-0.2272
x6	0.1566	90	0.8759	0.0325
x7	-1.2415	90	0.2176	-0.2779
x8	-0.3071	90	0.7595	-0.0680
x9	-0.4488	90	0.6547	-0.0984
x10	0.7274	90	0.4688	0.1329
x11	1.6018	90	0.1127	0.3377
x12	-0.1895	90	0.8501	-0.0416
x13	0.6645	90	0.5081	0.1400
x14	-0.1981	90	0.8434	-0.0527
x15	1.9347	90	0.0562	0.3641
x16	1.3770	90	0.1719	0.2698
x17	-0.5694	90	0.5705	-0.1105
x18	0.2271	90	0.8209	0.0477
x19	-0.0956	90	0.9241	-0.0193

Table 3 – Illustrates the results of the F – test and ANOVA one way in regards to the categories of Age

	y2	Sum of	Df	Mean	F	Sig.
		Squares		Square		
	Between	0.8335	4	0.2084	0.1565	0.9596
	Groups					
x1	Within	115.8186	87	1.3312		
	Groups					
	Total	116.6522	91			
	Between	2.9543	4	0.7386	0.6412	0.6345
	Groups					
x2	Within	100.2087	87	1.1518		
	Groups					
	Total	103.1630	91			
w2	Between	5.4245	4	1.3561	1.6486	0.1693
X3	Groups					

	Within	71.5646	87	0.8226		
	Groups					
	Total	76.9891	91			
	Between	6.1304	4	1.5326	1.4055	0.2389
	Groups					
x4	Within	94.8696	87	1.0905		
	Groups					
	Total	101.0000	91			
	Between	3.1893	4	0.7973	0.9561	0.4358
	Groups					
x5	Within	72.5498	87	0.8339		
	Groups					
	Total	75.7391	91			
	Between	1.8849	4	0.4712	0.5059	0.7315
	Groups					
x6	Within	81.0282	87	0.9314		
	Groups					
	Total	82.9130	91			
	Between	2.9262	4	0.7316	0.6673	0.6164
	Groups					
x7	Within	95.3781	87	1.0963		
	Groups					
	Total	98.3043	91			
	Between	5.2290	4	1.3072	1.2732	0.2867
	Groups					
x8	Within	89.3254	87	1.0267		
	Groups					
	Total	94.5543	91			
	Between	0.6536	4	0.1634	0.1541	0.9607
	Groups					
x9	Within	92.2485	87	1.0603		
	Groups					
	Total	92.9022	91			
	Between	2.4177	4	0.6044	0.8439	0.5011
	Groups					
x10	Within	62.3106	87	0.7162		
	Groups					
	Total	64.7283	91			
	Between	3.0901	4	0.7725	0.7896	0.5350
	Groups					
x11	Within	85.1165	87	0.9784		
	Groups					
	Total	88.2065	91			

	Between	1.7286	4	0.4322	0.4124	0.7993
w10	Within	01 1726	07	1.0490		
XIZ	Croups	91.1750	07	1.0460		
	Tatal	02.0022	01			
	Total	92.9022	91	2 1 2 0 7	2 4020	0.0550
	Between	8.5586	4	2.1397	2.4038	0.0558
10	Groups		07	0.0001		
x13	Within	77.4414	87	0.8901		
	Groups					
	Total	86.0000	91			
	Between	1.7866	4	0.4467	0.2880	0.8851
	Groups					
x14	Within	134.9525	87	1.5512		
	Groups					
	Total	136.7391	91			
	Between	1.4806	4	0.3701	0.4621	0.7633
	Groups					
x15	Within	69.6825	87	0.8009		
	Groups					
	Total	71.1630	91			
	Between	2.7941	4	0.6985	0.8346	0.5068
	Groups					
x16	Within	72.8146	87	0.8369		
	Groups					
	Total	75.6087	91			
	Between	4.8176	4	1.2044	1.5370	0.1985
	Groups					
x17	Within	68.1716	87	0.7836		
	Groups					
	Total	72,9891	91			
	Between	5 9818	4	1 4955	1 6449	0.1702
	Groups	5.9010		1.1955	1.0117	0.1702
v 18	Within	79 0942	87	0.9091		
AIO	Groups	79.0912	07	0.9091		
	Total	85.0761	91			
	Retween	2 7601		0.6023	0.7056	0.5312
	Groups	2.7071		0.0725	0.7950	0.3312
v10	Within	75 6082	87	0.8701		
л19	Groups	13.0962	0/	0.0701		
	Tatal	70 1671	01			
	Total	/8.40/4	91			

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

Table 4 – illustrates the results of the F – test and ANOVA one way for the Experience Category

v3		Sum of		Mean		
	y <i>3</i>	Squares	df	Square	F	Sig.
	Between	1.3521	4	0.3380	0.2550	0.9059
	Groups					
x1	Within	115.3001	87	1.3253		
	Groups					
	Total	116.6522	91			
	Between	4.6349	4	1.1587	1.0232	0.4000
	Groups					
x2	Within	98.5281	87	1.1325		
	Groups					
	Total	103.1630	91			
	Between	4.1962	4	1.0490	1.2538	0.2944
	Groups					
x3	Within	72.7929	87	0.8367		
	Groups					
	Total	76.9891	91			
	Between	3.9152	4	0.9788	0.8771	0.4811
	Groups					
x4	Within	97.0848	87	1.1159		
	Groups					
	Total	101.0000	91			
	Between	0.7958	4	0.1990	0.2310	0.9203
	Groups					
x5	Within	74.9433	87	0.8614		
	Groups					
	Total	75.7391	91			
	Between	5.3975	4	1.3494	1.5145	0.2050
	Groups					
x6	Within	77.5156	87	0.8910		
	Groups					
	Total	82.9130	91			
	Between	7.0740	4	1.7685	1.6865	0.1604
	Groups					
x7	Within	91.2304	87	1.0486		
	Groups					
	Total	98.3043	91			
	Between	8.5593	4	2.1398	2.1648	0.0796
x8	Groups					
	Within	85.9951	87	0.9884		
	Groups					

	Total	94.5543	91			
	Between	1.1503	4	0.2876	0.2727	0.8949
	Groups					
x9	Within	91.7519	87	1.0546		
	Groups					
	Total	92.9022	91			
	Between	2.5451	4	0.6363	0.8902	0.4734
	Groups					
x10	Within	62.1831	87	0.7147		
	Groups					
	Total	64.7283	91			
	Between	<mark>9.1873</mark>	<mark>4</mark>	<mark>2.2968</mark>	<mark>2.5288</mark>	0.0462
	Groups		_			
x11	Within	79.0193	87	0.9083		
	Groups					
	Total	88.2065	91			
	Between	2.6861	4	0.6715	0.6476	0.6301
	Groups					
x12	Within	90.2160	87	1.0370		
	Groups					
	Total	92.9022	91			
	Between	2.7651	4	0.6913	0.7225	0.5789
	Groups					
x13	Within	83.2349	87	0.9567		
	Groups					
	Total	86.0000	91			
	Between	5.7068	4	1.4267	0.9473	0.4407
	Groups					
x14	Within	131.0323	87	1.5061		
	Groups					
	Total	136.7391	91			
	Between	2.5549	4	0.6387	0.8100	0.5222
	Groups					
x15	Within	68.6081	87	0.7886		
	Groups					
	Total	71.1630	91			
	Between	3.1063	4	0.7766	0.9319	0.4494
	Groups					
x16	Within	72.5024	87	0.8334		
	Groups					
	Total	75.6087	91			
x17	Between	4.4982	4	1.1246	1.4285	0.2313
A17	Groups					

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

	Within	68.4909	87	0.7873		
	Groups					
	Total	72.9891	91			
	Between	1.9468	4	0.4867	0.5094	0.7290
	Groups					
x18	Within	83.1293	87	0.9555		
	Groups					
	Total	85.0761	91			
	Between	3.0560	4	0.7640	0.8814	0.4786
	Groups					
x19	Within	75.4114	87	0.8668		
	Groups					
	Total	78.4674	91			

Table 5 – Illustrates the Multi Comparison among the Arithmetic Mean for the Category of Experience

Dependent				Mean Difference	
Variable		(I) y3	(J) y3	(I-J)	Sig.
x1	LSD	less than 5	5-10	.059	.853
		years	years		
			11-15	.395	.330
			years		
			15-20	.170	.701
			years		
			more than	.068	.861
			20 years		
		5-10 years	less than	059	.853
			5 years		
			11-15	.337	.456
			years		
			15-20	.112	.818
			years		
			more than	.010	.983
			20 years		
		11-15 years	less than	395	.330
			5 years		
			5-10	337	.456
			years		
			15-20	225	.681
			years		

			more than	327	.517
			20 years		
		15-20 years	less than	170	.701
		-	5 years		
			5-10	112	.818
			years		
			11-15	.225	.681
			years		
			more than	102	.849
			20 years		
		more than 20	less than	068	.861
		years	5 years		
			5-10	010	.983
			years		
			11-15	.327	.517
			years		
			15-20	.102	.849
			years		
x2	LSD	less than 5	5-10	.167	.568
		years	years		
			11-15	227	.544
			years		
			15-20	352	.391
			years		
			more than	545	.132
			20 years		
		5-10 years	less than	167	.568
			5 years		
			11-15	395	.345
			years		
			15-20	520	.250
			years		
			more than	713	.081
			20 years		
		11-15 years	less than	.227	.544
			5 years		
			5-10	.395	.345
			years		
			15-20	125	.805
			years		
			more than	318	.496
			20 years		
		15-20 years	less than	.352	.391
			5 years		

			5-10	.520	.250
			years		
			11-15	.125	.805
			years		
			more than	193	.697
			20 years		
		more than 20	less than	.545	.132
		years	5 years		
			5-10	.713	.081
			years		
			11-15	.318	.496
			years		
			15-20	.193	.697
			years		
x3	LSD	less than 5	5-10	080	.750
		years	years		
		-	11-15	259	.421
			years		
			15-20	284	.421
			years		
			more than	659	.035
			20 years		
		5-10 years	less than	.080	.750
			5 years		
			11-15	179	.618
			years		
			15-20	204	.598
			years		
			more than	579	.098
			20 years		
		11-15 years	less than	.259	.421
			5 years		
			5-10	.179	.618
			years		
			15-20	025	.954
			years		
			more than	400	.320
			20 years		
		15-20 years	less than	.284	.421
		-	5 years		
			5-10	.204	.598
			years		
			11-15	.025	.954
			years		

			more than	375	.380
			20 years		
		more than 20	less than	.659	.035
		years	5 years		
			5-10	.579	.098
			years		
			11-15	.400	.320
			years		
			15-20	.375	.380
			years		
x4	LSD	less than 5	5-10	.116	.690
		years	years		
			11-15	.032	.932
			years		
			15-20	443	.278
			years		
			more than	477	.184
			20 years		
		5-10 years	less than	116	.690
		-	5 years		
			11-15	084	.839
			years		
			15-20	559	.212
			years		
			more than	593	.142
			20 years		
		11-15 years	less than	032	.932
			5 years		
			5-10	.084	.839
			years		
			15-20	475	.346
			years		
			more than	509	.273
			20 years		
		15-20 years	less than	.443	.278
			5 years		
			5-10	.559	.212
			years		
			11-15	.475	.346
			years		
			more than	034	.945
			20 years		
		more than 20	less than	.477	.184
		years	5 years		

			5-10	.593	.142
			years		
			11-15	.509	.273
			years		
			15-20	.034	.945
			years		
x5	LSD	less than 5	5-10	.013	.959
		years	years		
			11-15	.050	.878
			years		
			15-20	.250	.485
			years		
			more than	159	.612
			20 years		
		5-10 years	less than	013	.959
			5 years		
			11-15	.037	.919
			years		
			15-20	.237	.546
			years		
			more than	172	.625
			20 years		
		11-15 years	less than	050	.878
			5 years		
			5-10	037	.919
			years		
			15-20	.200	.651
			years		
			more than	209	.607
			20 years		
		15-20 years	less than	250	.485
			5 years		
			5-10	237	.546
			years		
			11-15	200	.651
			years		
			more than	409	.345
			20 years		
		more than 20	less than	.159	.612
		years	5 years		
			5-10	.172	.625
			years		
			11-15	.209	.607
			years		

			15-20	.409	.345
			years		
xб	LSD	less than 5	5-10	.257	.324
		years	years		
		-	11-15	295	.374
			years		
			15-20	.705	.055
			years		
			more than	.114	.722
			20 years		
		5-10 years	less than	257	.324
		5	5 years		
			11-15	553	.138
			years		
			15-20	.447	.264
			vears		
			more than	144	.689
			20 years		
		11-15 years	less than	.295	.374
		5	5 years		
			5-10	.553	.138
			years		
			15-20	1.000	.028
			years		
			more than	.409	.324
			20 years		
		15-20 years	less than	705	.055
		-	5 years		
			5-10	447	.264
			years		
			11-15	-1.000	.028
			years		
			more than	591	.181
			20 years		
		more than 20	less than	114	.722
		years	5 years		
			5-10	.144	.689
			years		
			11-15	409	.324
			years		
			15-20	.591	.181
			years		
x7	LSD	less than 5	5-10	508	.074
		years	years		

			11-15	.086	.810
			years		
			15-20	.386	.329
			years		
			more than	.295	.394
			20 years		
		5-10 years	less than	.508	.074
		•	5 years		
			11-15	.595	.141
			years		
			15-20	.895	.041
			years		
			more than	.804	.041
			20 years		
		11-15 years	less than	086	.810
		5	5 years		
			5-10	595	.141
			years		
			15-20	.300	.538
			vears		
			more than	.209	.641
			20 years		
		15-20 years	less than	386	.329
		J	5 years		
			5-10	895	.041
			vears		
			11-15	300	.538
			vears		
			more than	091	.849
			20 years		
		more than 20	less than	295	.394
		vears	5 years		
		J ~	5-10	804	.041
			vears		
			11-15	209	.641
			vears		
			15-20	.091	.849
			vears		
x8	LSD	less than 5	5-10	.371	.178
		vears	vears		
		J	11-15	.218	.533
			vears		
			15-20	.943	.016
			vears	., .,	
	1		Jours	1	1

			more than	227	.499
			20 years		
		5-10 years	less than	371	.178
			5 years		
			11-15	153	.695
			years		
			15-20	.572	.175
			years		
			more than	598	.116
			20 years		
		11-15 years	less than	218	.533
		-	5 years		
			5-10	.153	.695
			years		
			15-20	.725	.128
			years		
			more than	445	.308
			20 years		
		15-20 years	less than	943	.016
		•	5 years		
			5-10	572	.175
			years		
			11-15	725	.128
			years		
			more than	-1.170	.013
			20 years		
		more than 20	less than	.227	.499
		years	5 years		
			5-10	.598	.116
			years		
			11-15	.445	.308
			years		
			15-20	1.170	.013
			years		
x9	LSD	less than 5	5-10	016	.956
		years	years		
			11-15	268	.458
			years		
			15-20	.182	.646
			years		
			more than	159	.647
			20 years		
		5-10 years	less than	.016	.956
		-	5 years		

			11-15	253	.531
			years		
			15-20	.197	.650
			years		
			more than	144	.713
			20 years		
		11-15 years	less than	.268	.458
			5 years		
			5-10	.253	.531
			years		
			15-20	.450	.358
			years		
			more than	.109	.808
			20 years		
		15-20 years	less than	182	.646
		•	5 years		
			5-10	197	.650
			years		
			11-15	450	.358
			years		
			more than	341	.477
			20 years		
		more than 20	less than	.159	.647
		years	5 years		
		-	5-10	.144	.713
			years		
			11-15	109	.808
			years		
			15-20	.341	.477
			years		
x10	LSD	less than 5	5-10	158	.498
		years	years		
		-	11-15	200	.501
			years		
			15-20	.375	.252
			years		
			more than	273	.341
			20 years		
		5 10 years	less than	158	.498
		J-10 years	icos tiluii	.100	
		J-10 years	5 years		
		J-10 years	5 years 11-15	042	.899
		5-10 years	5 years 11-15 years	042	.899
		5-10 years	5 years 11-15 years 15-20	042	.899

			more than	115	.721
			20 years		
		11-15 years	less than	.200	.501
			5 years		
			5-10	.042	.899
			years		
			15-20	.575	.155
			years		
			more than	073	.844
			20 years		
		15-20 years	less than	375	.252
		-	5 years		
			5-10	533	.138
			years		
			11-15	575	.155
			years		
			more than	648	.103
			20 years		
		more than 20	less than	.273	.341
		years	5 years		
		-	5-10	.115	.721
			years		
			11-15	.073	.844
			years		
			15-20	.648	.103
			years		
x11	LSD	less than 5	5-10	.085	.746
		years	years		
			11-15	405	.229
			years		
			<mark>15-20</mark>	<mark>.920</mark>	<mark>.014</mark>
			years years		
			more than	250	.439
			20 years		
		5-10 years	less than	085	.746
			5 years		
			11-15	489	.192
			years		
			<mark>15-20</mark>	<mark>.836</mark>	<mark>.040</mark>
			years		
			more than	335	.356
			20 years		
		11-15 years	less than	.405	.229
		-	5 years		

			5-10	.489	.192
			years		
			<mark>15-20</mark> years	<mark>1.325</mark>	<mark>.004</mark>
			more than	.155	.711
			20 years		
		15-20 years	less than 5 years	<mark>920</mark>	<mark>.014</mark>
			5-10 years	<mark>836</mark>	<mark>.040</mark>
			<mark>11-15</mark> years	<mark>-1.325</mark>	<mark>.004</mark>
			more than	<mark>-1.170</mark>	<mark>.010</mark>
			20 years		
		more than 20	less than	.250	.439
		years	5 years		
			5-10	.335	.356
			years		
			11-15	155	.711
			years	1 170	010
			15-20 years	1.170	.010
x12	LSD	less than 5	5-10	305	.278
		years	years		
			11-15	.132	.713
			years		
			15-20	068	.862
			years	201	2.62
			more than 20 years	386	.263
		5-10 years	less than 5 years	.305	.278
			11-15	.437	.275
			years		
			15-20	.237	.582
			years		
			more than	081	.834
			20 years		
		11-15 years	less than	132	.713
			5 years		
			5-10	437	.275
			years	200	600
			15-20	200	.680
			years		

			more than	518	.247
			20 years		
		15-20 years	less than	.068	.862
		•	5 years		
			5-10	237	.582
			years		
			11-15	.200	.680
			years		
			more than	318	.503
			20 years		
		more than 20	less than	.386	.263
		years	5 years		
			5-10	.081	.834
			years		
			11-15	.518	.247
			years		
			15-20	.318	.503
			years		
x13	LSD	less than 5	5-10	.060	.824
		years	years		
			11-15	445	.197
			years		
			15-20	295	.434
			years		
			more than	.136	.680
			20 years		
		5-10 years	less than	060	.824
			5 years		
			11-15	505	.190
			years		201
			15-20	355	.391
			years	0.55	005
			more than	.077	.837
		11.15	20 years	115	107
		11-15 years	less than	.445	.197
			5 years	505	100
			5-10	.505	.190
			years	150	747
			15-20	.150	./4/
			years	500	177
			nore than	.382	.1//
		15 20	20 years	205	121
		15-20 years	less than	.295	.434
			5 years		

			5-10	.355	.391
			years		
			11-15	150	.747
			years		
			more than	.432	.345
			20 years		
		more than 20	less than	136	.680
		years	5 years		
			5-10	077	.837
			years		
			11-15	582	.177
			years		
			15-20	432	.345
			years		
x14	LSD	less than 5	5-10	.367	.279
		years	years		
			11-15	159	.712
			years		
			15-20	.591	.214
			years		
			more than	250	.547
			20 years		
		5-10 years	less than	367	.279
		2	5 years		
			11-15	526	.275
			years		
			15-20	.224	.666
			years		
			more than	617	.188
			20 years		
		11-15 years	less than	.159	.712
			5 years		
			5-10	.526	.275
			years		
			15-20	.750	.201
			years		
			more than	091	.866
			20 years		
		15-20 years	less than	591	.214
		-	5 years		
			5-10	224	.666
			years		
			11-15	750	.201
			years		

			more than	841	.144
			20 years		
		more than 20	less than	.250	.547
		years	5 years		
			5-10	.617	.188
			years		
			11-15	.091	.866
			years		
			15-20	.841	.144
			years		
x15	LSD	less than 5	5-10	342	.164
		years	years		
			11-15	400	.202
			years		
			15-20	.000	1.000
			years		
			more than	227	.450
			20 years		
		5-10 years	less than	.342	.164
		-	5 years		
			11-15	058	.868
			years		
			15-20	.342	.363
			years		
			more than	.115	.734
			20 years		
		11-15 years	less than	.400	.202
			5 years		
			5-10	.058	.868
			years		
			15-20	.400	.345
			years		
			more than	.173	.657
			20 years		
		15-20 years	less than	.000	1.000
			5 years		
			5-10	342	.363
			years		
			11-15	400	.345
			years		
			more than	227	.583
			20 years		
		more than 20	less than	.227	.450
		years	5 years		

			5-10	115	.734
			years		
			11-15	173	.657
			years		
			15-20	.227	.583
			years		
x16	LSD	less than 5	5-10	.309	.221
		years	years		
			11-15	.045	.887
			years		
			15-20	.545	.124
			years		
			more than	045	.883
			20 years		
		5-10 years	less than	309	.221
			5 years		
			11-15	263	.463
			years		
			15-20	.237	.540
			years		
			more than	354	.309
			20 years		
		11-15 years	less than	045	.887
			5 years		
			5-10	.263	.463
			years		
			15-20	.500	.251
			years		
			more than	091	.820
			20 years		
		15-20 years	less than	545	.124
			5 years		
			5-10	237	.540
			years		
			11-15	500	.251
			years		
			more than	591	.167
			20 years		
		more than 20	less than	.045	.883
		years	5 years		
			5-10	.354	.309
			years		
			11-15	.091	.820
			years		

			15.00	T 0.1	
			15-20	.591	.167
			years		
x17	LSD	less than 5	5-10	.045	.852
		years	years		
			11-15	.645	.041
			years		
			15-20	.045	.894
			years		
			more than	227	.449
			20 years		
		5-10 years	less than	045	.852
			5 years		
			11-15	.600	.087
			years		
			15-20	.000	1.000
			years		
			more than	273	.419
			20 years		
		11-15 years	less than	645	.041
		-	5 years		
			5-10	600	.087
			years		
			15-20	600	.158
			years		
			more than	873	.027
			20 years		
		15-20 years	less than	045	.894
		-	5 years		
			5-10	.000	1.000
			years		
			11-15	.600	.158
			vears		
			more than	273	.510
			20 years		
		more than 20	less than	.227	.449
		vears	5 years		
		J ~	5-10	.273	.419
			vears		
			11-15	.873	.027
			vears		
			15-20	.273	.510
			vears		
x18	LSD	less than 5	5-10	.080	.766
	_~2	vears	vears		
	1	J	J ~~	1	1

			11-15	041	.905
			years		
			15-20	466	.218
			years		
			more than	159	.630
			20 years		
		5-10 years	less than	080	.766
		-	5 years		
			11-15	121	.752
			years		
			15-20	546	.188
			years		
			more than	239	.520
			20 years		
		11-15 years	less than	.041	.905
		5	5 years		
			5-10	.121	.752
			years		
			15-20	425	.362
			years		
			more than	118	.783
			20 years		
		15-20 years	less than	.466	.218
		2	5 years		
			5-10	.546	.188
			years		
			11-15	.425	.362
			years		
			more than	.307	.501
			20 years		
		more than 20	less than	.159	.630
		years	5 years		
		2	5-10	.239	.520
			years		
			11-15	.118	.783
			years		
			15-20	307	.501
			years		
x19	LSD	less than 5	5-10	045	.859
		years	years		
		-	11-15	145	.657
			vears		
			jears		
			15-20	420	.243

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

		more than	500	.115
		20 years		
	5-10 years	less than	.045	.859
		5 years		
		11-15	100	.784
		years		
		15-20	375	.342
		years		
		more than	455	.201
		20 years		
	11-15 years	less than	.145	.657
		5 years		
		5-10	.100	.784
		years		
		15-20	275	.535
		years		
		more than	355	.386
		20 years		
	15-20 years	less than	.420	.243
		5 years		
		5-10	.375	.342
		years		
		11-15	.275	.535
		years		
		more than	080	.855
		20 years		
	more than $\overline{20}$	less than	.500	.115
	years	5 years		
		5-10	.455	.201
		years		
		11-15	.355	.386
		years		
		15-20	.080	.855
		years		

Table 6 -Illustrates the results of the F – Test and ANOVA one way among the Categories of Scientific Rank

y4		Sum of Squares	df	Mean Square	F	Sig.
	Between	5.188	3	1.729	1.365	.259
x1	Groups					
	Within Groups	111.464	88	1.267		

	Total	116.652	91			
	Between	2.597	3	.866	.758	.521
0	Groups					
x2	Within Groups	100.566	88	1.143		
	Total	103.163	91			
	Between	1.613	3	.538	.628	.599
x3	Groups					
	Within Groups	75.376	88	.857		
	Total	76.989	91			
×4	Between Groups	<mark>10.071</mark>	3	<mark>3.357</mark>	<mark>3.249</mark>	<mark>.026</mark>
74	Within Groups	90.929	88	1.033		
	Total	101.000	91			
	Between	.112	3	.037	.044	.988
x5	Groups					
лJ	Within Groups	75.627	88	.859		
	Total	75.739	91			
	Between	1.489	3	.496	.536	.659
v6	Groups					
лU	Within Groups	81.424	88	.925		
	Total	82.913	91			
	Between	3.004	3	1.001	.924	.432
х7	Groups					
Λ/	Within Groups	95.301	88	1.083		
	Total	98.304	91			
	Between	.121	3	.040	.038	.990
vQ	Groups					
хо	Within Groups	94.433	88	1.073		
	Total	94.554	91			
	Between	3.532	3	1.177	1.159	.330
vO	Groups					
X9	Within Groups	89.370	88	1.016		
	Total	92.902	91			
	Between	4.149	3	1.383	2.009	.118
w10	Groups					
XIU	Within Groups	60.579	88	.688		
	Total	64.728	91			
	Between	.090	3	.030	.030	.993
v11	Groups					
XII	Within Groups	88.117	88	1.001		
	Total	88.207	91			
	Between	1.015	3	.338	.324	.808
x12	Groups					
	Within Groups	91.888	88	1.044		

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

	Total	92.902	91			
	Between	.367	3	.122	.126	.945
x13	Groups					
	Within Groups	85.633	88	.973		
	Total	86.000	91			
	Between	5.651	3	1.884	1.264	.292
v1/	Groups					
A14	Within Groups	131.088	88	1.490		
	Total	136.739	91			
	Between	3.750	3	1.250	1.632	.188
v15	Groups					
X13	Within Groups	67.413	88	.766		
	Total	71.163	91			
	Between	3.381	3	1.127	1.373	.256
v16	Groups					
AIU	Within Groups	72.228	88	.821		
	Total	75.609	91			
	Between	.831	3	.277	.338	.798
v17	Groups					
A17	Within Groups	72.158	88	.820		
	Total	72.989	91			
	Between	2.622	3	.874	.933	.428
v18	Groups					
X18	Within Groups	82.454	88	.937		
	Total	85.076	91			
	Between	3.980	3	1.327	1.567	.203
v10	Groups					
X19	Within Groups	74.487	88	.846		
	Total	78.467	91			

Table 7 – Illustrates Multi Comparison among Means for Scientific Rank

Depe	ndent			Mean Difference	
Vari	iable	(I) y4	(J) y4	(I-J)	Sig.
x1	LSD	B.A.	M.A.	.933	.174
			M.Sc.	.468	.490
			PhD	.515	.459
		M.A.	B.A.	933	.174
			M.Sc.	465	.096
			PhD	418	.189
		M.Sc.	B.A.	468	.490
			M.A.	.465	.096
			PhD	.047	.878

		PhD	B.A.	515	.459
			M.A.	.418	.189
			M.Sc.	047	.878
x2	LSD	B.A.	M.A.	233	.719
			M.Sc.	324	.615
			PhD	636	.336
		M.A.	B.A.	.233	.719
			M.Sc.	091	.730
			PhD	403	.183
		M.Sc.	B.A.	.324	.615
			M.A.	.091	.730
			PhD	312	.281
		PhD	B.A.	.636	.336
			M.A.	.403	.183
			M.Sc.	.312	.281
x3	LSD	B.A.	M.A.	.567	.315
			M.Sc.	.595	.287
			PhD	.364	.525
		M.A.	B.A.	567	.315
			M.Sc.	.028	.903
			PhD	203	.437
		M.Sc.	B.A.	595	.287
			M.A.	028	.903
			PhD	231	.357
		PhD	B.A.	364	.525
			M.A.	.203	.437
			M.Sc.	.231	.357
x4	LSD	B.A.	M.A.	.733	.237
			M.Sc.	.676	.271
			PhD	045	.942
		M.A.	B.A.	733	.237
			M.Sc.	058	.818
			PhD	<mark>779</mark>	<mark>.008</mark>
		M.Sc.	B.A.	676	.271
			M.A.	.058	.818
			PhD	<mark>721</mark>	<mark>.010</mark>
		PhD	B.A.	.045	.942
			M.A.	<mark>.779</mark>	.008
			M.Sc.	.721	.010
x5	LSD	B.A.	M.A.	100	.859
			M.Sc.	036	.949
			PhD	106	.853
		M.A.	B.A.	.100	.859

			M.Sc.	.064	.779
			PhD	006	.981
		M.Sc.	B.A.	.036	.949
			M.A.	064	.779
			PhD	070	.780
		PhD	B.A.	.106	.853
			M.A.	.006	.981
			M.Sc.	.070	.780
x6	LSD	B.A.	M.A.	.500	.393
			M.Sc.	.667	.251
			PhD	.530	.373
		M.A.	B.A.	500	.393
			M.Sc.	.167	.483
			PhD	.030	.911
		M.Sc.	B.A.	667	.251
			M.A.	167	.483
			PhD	136	.600
		PhD	B.A.	530	.373
			M.A.	030	.911
			M.Sc.	.136	.600
x7	LSD	B.A.	M.A.	533	.400
			M.Sc.	514	.413
			PhD	136	.832
		M.A.	B.A.	.533	.400
			M.Sc.	.020	.938
			PhD	.397	.178
		M.Sc.	B.A.	.514	.413
			M.A.	020	.938
			PhD	.377	.182
		PhD	B.A.	.136	.832
			M.A.	397	.178
			M.Sc.	377	.182
x8	LSD	B.A.	M.A.	.200	.751
			M.Sc.	.171	.784
			PhD	.152	.813
		M.A.	B.A.	200	.751
			M.Sc.	029	.910
			PhD	048	.868
		M.Sc.	B.A.	171	.784
			M.A.	.029	.910
			PhD	020	.944
		PhD	B.A.	152	.813
			M.A.	.048	.868

			M.Sc.	.020	.944
x9	LSD	B.A.	M.A.	.600	.328
			M.Sc.	.360	.553
			PhD	.106	.865
		M.A.	B.A.	600	.328
			M.Sc.	240	.336
			PhD	494	.084
		M.Sc.	B.A.	360	.553
			M.A.	.240	.336
			PhD	254	.351
		PhD	B.A.	106	.865
			M.A.	.494	.084
			M.Sc.	.254	.351
x10	LSD	B.A.	M.A.	.833	.101
			M.Sc.	.640	.202
			PhD	.348	.497
		M.A.	B.A.	833	.101
			M.Sc.	194	.345
			PhD	485	.040
		M.Sc.	B.A.	640	.202
			M.A.	.194	.345
			PhD	291	.196
		PhD	B.A.	348	.497
			M.A.	.485	.040
			M.Sc.	.291	.196
x11	LSD	B.A.	M.A.	.067	.913
			M.Sc.	.090	.881
			PhD	.015	.980
		M.A.	B.A.	067	.913
			M.Sc.	.023	.924
			PhD	052	.855
		M.Sc.	B.A.	090	.881
			M.A.	023	.924
			PhD	075	.782
		PhD	B.A.	015	.980
			M.A.	.052	.855
			M.Sc.	.075	.782
x12	LSD	B.A.	M.A.	067	.914
			M.Sc.	288	.640
			PhD	258	.683
		M.A.	B.A.	.067	.914
			M.Sc.	222	.380
			PhD	191	.507

		M.Sc.	B.A.	.288	.640
			M.A.	.222	.380
			PhD	.031	.911
		PhD	B.A.	.258	.683
			M.A.	.191	.507
			M.Sc.	031	.911
x13	LSD	B.A.	M.A.	367	.541
			M.Sc.	333	.575
			PhD	333	.584
		M.A.	B.A.	.367	.541
			M.Sc.	.033	.891
			PhD	.033	.904
		M.Sc.	B.A.	.333	.575
			M.A.	033	.891
			PhD	.000	1.000
		PhD	B.A.	.333	.584
			M.A.	033	.904
			M.Sc.	.000	1.000
x14	LSD	B.A.	M.A.	1.400	.061
			M.Sc.	1.270	.086
			PhD	1.136	.134
		M.A.	B.A.	-1.400	.061
			M.Sc.	130	.666
			PhD	264	.444
		M.Sc.	B.A.	-1.270	.086
			M.A.	.130	.666
			PhD	134	.685
		PhD	B.A.	-1.136	.134
			M.A.	.264	.444
			M.Sc.	.134	.685
x15	LSD	B.A.	M.A.	.700	.190
			M.Sc.	.874	.100
			PhD	.470	.386
		M.A.	B.A.	700	.190
			M.Sc.	.174	.421
			PhD	230	.351
		M.Sc.	B.A.	874	.100
			M.A.	174	.421
			PhD	404	.090
		PhD	B.A.	470	.386
			M.A.	.230	.351
			M.Sc.	.404	.090
x16	LSD	B.A.	M.A.	.567	.304

			M.Sc.	.883	.108
			PhD	.803	.153
		M.A.	B.A.	567	.304
			M.Sc.	.316	.159
			PhD	.236	.355
		M.Sc.	B.A.	883	.108
			M.A.	316	.159
			PhD	080	.744
		PhD	B.A.	803	.153
			M.A.	236	.355
			M.Sc.	.080	.744
x17	LSD	B.A.	M.A.	.000	1.000
			M.Sc.	.108	.843
			PhD	136	.807
		M.A.	B.A.	.000	1.000
			M.Sc.	.108	.628
			PhD	136	.593
		M.Sc.	B.A.	108	.843
			M.A.	108	.628
			PhD	244	.319
		PhD	B.A.	.136	.807
			M.A.	.136	.593
			M.Sc.	.244	.319
x18	LSD	B.A.	M.A.	.800	.176
			M.Sc.	.631	.281
			PhD	.470	.433
		M.A.	B.A.	800	.176
			M.Sc.	169	.478
			PhD	330	.227
		M.Sc.	B.A.	631	.281
			M.A.	.169	.478
			PhD	161	.538
		PhD	B.A.	470	.433
			M.A.	.330	.227
			M.Sc.	.161	.538
x19	LSD	B.A.	M.A.	.933	.097
			M.Sc.	1.081	.053
			PhD	.773	.176
		M.A.	B.A.	933	.097
			M.Sc.	.148	.515
			PhD	161	.536
		M.Sc.	B.A.	-1.081	.053
			M.A.	148	.515

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

		PhD	308	.216
	PhD	B.A.	773	.176
		M.A.	.161	.536
		M.Sc.	.308	.216

Table 8 – Illustrates Collective Arithmetic Mean for both Dimensions in regards o Gender

				Std.
	y1	Ν	Mean	Deviation
Cognitive	Male	58	3.5052	.45708
	Female	34	3.5500	.32122
Implementation	Male	58	3.9234	.50004
Implementation	Female	34	3.8922	.41075

Table 9 – Illustrates Z – Test for 2 independent samples (male and female) in regardsto both dimensions (cognitive and application)

Y1	Т	df	Sig. (2- tailed)	Mean Difference
Cognitive	-0.503	90	0.616	-0.04483
Implementation	0.308	90	0.759	0.03121

Table 10 - Illustrates results of the F – Test and ANOVA one way among the Age category in regards of the cognitive and application dimension

y2		Sum of		Mean		
		Squares	df	Square	F	Sig.
	Between	.909	4	.227	1.369	.251
	Groups					
Cognitive	Within	14.447	87	.166		
	Groups					
	Total	15.357	91			
Implementation	Between	1.138	4	.285	1.324	.268
	Groups					
	Within	18.702	87	.215		
	Groups					
	Total	19.840	91			

Table 11 - Illustrates results of the F – Test and ANOVA one way among the Experience category in regards of the cognitive and application dimension

у3		Sum of Squares	df	Mean Square	F	Sig.
	Between	.658	4	.165	.974	.426
	Groups					
Cognitive	Within	14.698	87	.169		
	Groups					
	Total	15.357	91			
	Between	.776	4	.194	.885	.476
Implementation	Groups					
	Within	19.065	87	.219		
	Groups					
	Total	19.840	91			

Table 12- Illustrates Multi Comparison among the Arithmetic Means for theExperience Category in regards to the cognitive and application dimension

Dependent Variable	(I) y3	(J) y3	Mean Difference (I-J)	Sig.
	less than 5	5-10 years	.01962	.862
	years	11-15 years	10091	.485
		15-20 years	.17159	.280
		more than 20 years	17273	.216
	5-10 years	less than 5 years	01962	.862
		11-15 years	12053	.455
		15-20 years	.15197	.383
Cognitive		more than 20 years	19234	.220
	11-15 years	less than 5 years	.10091	.485
		5-10 years	.12053	.455
		15-20 years	.27250	.166
		more than 20	07182	.690
	15-20 years	less than 5 vears	17159	.280
		5-10 years	15197	.383
		11-15 years	27250	.166

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

		more than 20	34432	.075
		years		
	more than 20	less than 5	.17273	.216
	years	years		
		5-10 years	.19234	.220
		11-15 years	.07182	.690
		15-20 years	.34432	.075
	less than 5	5-10 years	.03097	.810
	years	11-15 years	02576	.876
		15-20 years	.11869	.511
		more than 20	24495	.124
		years		
	5-10 years	less than 5	03097	.810
		years		
		11-15 years	05673	.757
		15-20 years	.08772	.658
		more than 20	27592	.123
		years		
	11-15 years	less than 5	.02576	.876
		years		
Implementation		5-10 years	.05673	.757
Implementation		15-20 years	.14444	.517
		more than 20	21919	.287
		years		
	15-20 years	less than 5	11869	.511
		years		
		5-10 years	08772	.658
		11-15 years	14444	.517
		more than 20	36364	.098
		years		
	more than 20	less than 5	.24495	.124
	years	years		
		5-10 years	.27592	.123
		11-15 years	.21919	.287
		15-20 years	.36364	.098

Table 13 – Illustrates the results of the F – Test and ANOVA one way among Scientific Degree categories in regards of to the cognitive and application dimension

y4		Sum of Squares	Df	Mean Square	F	Sig.
Cognitive	Between Groups	.434	3	.145	.853	.469

A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil – Kurdistan – Iraq Vol. (1), No. (1), August 2016 ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

	Within	14.923	88	.170		
	Groups					
	Total	15.357	91			
Implementation	Between	1.462	3	.487	2.334	.079
	Groups					
	Within	18.378	88	.209		
	Groups					
	Total	19.840	91			

Table 14 – Illustrates the Multi Comparison among the Arithmetic Means for the Scientific Degree Categories in regards to the cognitive and application dimension

Dependent			Mean Difference	
Variable	(I) y4	(J) y4	(I-J)	Sig.
	B.A.	M.A.	.22333	.373
		M.Sc.	.21622	.384
		PhD	.07727	.761
	M.A.	B.A.	22333	.373
		M.Sc.	00712	.944
Comitivo		PhD	14606	.210
Cognitive	M.Sc.	B.A.	21622	.384
		M.A.	.00712	.944
		PhD	13894	.213
	PhD	B.A.	07727	.761
		M.A.	.14606	.210
		M.Sc.	.13894	.213
	B.A.	M.A.	.58889	.036
		M.Sc.	.53954	.052
		PhD	.36195	.202
	M.A.	B.A.	58889	.036
		M.Sc.	04935	.661
Implementation		PhD	22694	.080
implementation	M.Sc.	B.A.	53954	.052
		M.A.	.04935	.661
		PhD	17759	.152
	PhD	B.A.	36195	.202
		M.A.	.22694	.080
		M.Sc.	.17759	.152

XIV. References:

Brilliantabacus.com. (2010). Retrieved August 21, 2010, from http://brilliantabacus.com/images/Brain_Functions_Picture.png,

Carrier, Sarah J. (2009). The Environmental Education in the Schoolyard: Learning Styles and Gender. Journal of Environmental Education v40 no3.Spring 2009. Wilson Web.

Cohen, Gene D. (1988). The brain in Human Aging.Spring Publishing Company, Inc. 536 Broadway, New York, NY 10012.

Davies, Caroline. (1996). Creatology: Brain Science for the 21st Century.

http://www.nexus.edu.au/teachstud/gat/davies.html. Retrieved 11/2/2002.

Geake, John. (2001). Gifted Brain. Retrieved April 21, 2003, from

http://www.edfac.unimelb.edu.au/LED/GDE/brain.html.

Gemma, Will. (2014). 7 Left Brain Characteristics We All Need. Udemyblog.https://blog.udemy.com/left-brain-characteristics/. Retrieved 3/8/2015.

Gurian, Michael. (2001). Boys and Girls Learning Differently: A Guide for Teachers and Parents.

Gusman, J. (2005). Brain Compatible Learning. http://members.tripod.com/~ospd/brain.html.

Cited by Judy Lombardi in Beyond Learning Styles: Brain-Based Research and English Language Learners. The Clearing House. May/June 2008.

Jensen, Eric. (2000). Brain-Based Learning: The New Science of Teaching and Learning. Revised Edition.CrowinPress.

Jensen, Eric (N.D.). What is Brain-Based Learning? Brain-Based Education is the purposeful engagement of strategies that apply to how our brain works in the context of education. Retrieved 2/1/2015. http://feaweb.org/brain-based-learning-strategies

Kahvaci, Ajda; AY, Selahtin. (2008). Different Approaches-Common Implications: Brain-Based and Constructivist Learning Form A Paradigms And Integral Model Perspective. Journal of Turkish Science Education.Valume 5, Issues 3, December 2008.

Kommer, David. (2006). Boys and Girls Together: A Case for Creating Gender-Friendly Middle School Classrooms. The Clearing House v79 no6 (July/August 2006. Wilson Web.

Lombardi, Judy. (2008). Beyond Learning Styles: Brain-Based Research and English Language Learners. Cleaning House 81 no5 May/June 2008. Wilson Web.

Mann, Judy. (1994). Bridging the Gender Gap: How Girls Learn. Streamlined Seminar.National Association of elementary School Principals. Volume 13, number 2, October 1994.

McCabe, Delia. (2014). Simple Food Habits to Help Your Precious Brain.Food Matters.http://foodmatters.tv/content/10-food-tips-to-help-your-brain. Retrieved 3/8/2015.

McMahan, Frank B.; McMahan, Judith W.; Romano, Tony.(1990). Psychology and You. West Publishing Company, 50 W. Kellogg Boulevard, P. O. Box 64526, St. Paul, MN 55164-1003, p. 51.

NCETM (National Center for Excellence in the Teaching of Mathematics). (2010). Working Collaboratively to enhance mathematics teaching.Girls and Mathematics.Retrieved July 9, 2010, from http://www.ncetm.org.uk/mathemapedia/Girls+and +mathematics.

Ramakrishnan, Jayalakshmi and Annakodi, R. (2013).Knowledge and Beliefs of Teachers Towards.Research Paper.Education. Volume 3, Issue 11. ISSN - 2249-555X. November 2013.

Richardson, Rita Coombs; Arker, Emily. (2010). Personalities in the Classroom: Making the most of them. KAPPA DELTA PI Record, p. 77. Winter 2010.

Schneider, Andrea. (2013). How Boys' Learning Styles Differ and How We Can Support Them. GoodTherapy.org. http://www.goodtherapy.org/blog/how-boys-learning-stylesdiffer-0211134. Retrieved 3/9/2015.

The Glossary of Educational Reform.(2013). Educational Reform. http://edglossary.org/brain-based-learning/. Retrieved 2/1/2015.

Traversy, Karen. (2009). Boys and Brain Development: How Boys Learn Best. TiderwaterSchoolWebsite.RetrievedJuly9,2010,fromhttp://tiderwaterschool.blogsport.com/2009/02/boys-andgirls-development-how-boys.html.

Wolf, Patricia. (2001). Brain Matters. Association for Supervision and Curriculum Development (ASCD). 1703 N. Beauregard St., Alexandria, VA 22311-1714., p. 5.

You, Zhixia.(2010). Gender Differences in Mathematics Learning.SchSci Math 110. No3. Mr 2010. Wilson Web.

پوخته:

فێرکردن لهسهر بنهمای مێشك ئاماژه بۆ رێگاکانی وانهگوتنهوه و دیزاینی وانه و پرۆگرامی قوتابخانهکان دهکات به پاڵپشتی نوێترین توێژینهوهی زانستی دهربارهی رێگاکانی بهدهستهێنانی مێشك که ئهم هۆکارانه لهخۆدهگرێت, وهك گهشهپێدانی زانیاری و چۆنیهتی فێرکردنی قوتابی بهشێوهیهکی جیاواز کاتێک که تهمهنیان بهرهوژوور دهچێت و لهرووی کۆمهلآیهتی و سۆزداری و زانیاری و دهرککردنهوه یێدهگهن.

ئامانجى ئەم توێژينەوەيە بەشێوەيەكى سەرەكى بۆ زانينى ئەمانەيە:

- تا چ رادەيەك پەروەردەكاران ستراتىژيەتى فيركردن لەسەر بنەماى ميشك دەزانن.
- تواناكانیان تا چ رادهیه له پراكتیككردنی ستراتیژیهت و جیاوازییه گهورهكان لهنیوان وه لأمدانه وه ههردوو رههه ندی دهرككردن و پراكتیكییه وه.

لەپيٽاو بەدى هيّنانى ئەو ئامانجەى سەرەوە, تويّژينەوەكە پيّشبينى دەكات بەوەى (HO) واتا نەبوونى جياوازى كە دەلالەت لە ئامار دەكات, رەتكردنەوەى وەلأمدانەوەى پەروەردەكاران تەنانەت لەسەر بنەماى راپرسى لە ھەردوو رەھەندى دەرككردن و يراكتيكيى تاكى و كۆمەلّىيەوە.

گرنگترین ئەو ئەنجامەي توێژینەوەكە پێي گەیشتووە بریتییە لە:

پەروەردەكاران هیچ زانیارییەكی پسپۆړییان نییه له رووی پراكتیكی و مەشقەوە, ئەمەش بە ئاماژەدان بە ستراتیژیەتی فیركردن لەسەر بنەمای میٚشك لەو ئەنجامانەی كە لە ئاستی ناوەندی (3) لە ھەردوو رەھەندی دەرككردن و پراكتیكییەوە روون بوو.

تویْژینهوهکه کوّتایی دیّت به چهند راسپاردهیهك به ئامانجی پراکتیکی و ههندیّك پیّشنیار بوّ زیاتر ئهنجامدانی تویّژینهوه له داهاتوودا.

الملخص:

يشير التعليم القائم على الدماغ الى طرائق التدريس وتصاميم الدروس والبرامج المدرسية التي تستند الى احدث الابحاث العلمية حول الطريقة التي يكسب الدماغ، متضمنة العوامل التربوية كالتنمية المعرفية وكيفية تعلم الطلبة بصورة مختلفة عندما يتقدمون في السن ويصبحون بالغين اجتماعيا"، و عاطفيا" ومعرفيا" وادراكيا". وتهدف هذه الدراسة بشكل اساسي الى معرفة:

- الى اي مدى يعرف التربويون استر اتيجية التعلم القائم على الدماغ.
- مدى قدرتهم على تطبيق الاستراتيجية والفوارق الكبيرة بين استجاباتهم في كلا البعدين الادراكي والتطبيقي.

ولتحقيق الاهداف المذكورة اعلاه، تفترض الدراسة بأن Ho يعني عدم وجود فروق ذات دلالة احصائية ردا" على استجابات التربويين وحتى على بنود الاستبيان في كلا البعدين الادراكي والتطبيقي والفردي والجماعي.

واهم الاستنتاجات التي توصلت اليها الدراسة هي: ليس للتربويين اية معرفة متخصصة من حيث الجانب التطبيقي والتدريبي بالاشارة الى استراتيجية التعلم القائم على الدماغ. وكان ذلك واضحا" من الاستنتاجات التي كانت في مستوى معتدل (3) في كلا البعدين الادراكي والتطبيقي.

وانتهت الدراسة الى بعض التوصيات لأهداف تطبيقية وبعض المقترحات لمزيد من الدراسات المستقبلية.