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 Regression analysis is one of the most popular statistical 

methods in various biological and economic studies where, 

frequently, the number of explanatory variables becomes 

large. Penalized methods have been adapted and have gained 

popularity as a key for simultaneously performing variable 

selection and model estimation. This paper proposes 

contamination procedure from the viewpoint of different 

types of penalized regression, aiming at identifying any types 

of penalized methods that are best to deal with 

contamination data. This paper demonstrates that the Lasso 

regression is the best method for contamination data 

depending on the heavy tail distribution behavior of the 

response variables and using simulation for (15%) data with 

contamination. The comparison between types of penalized 

methods based on the statistical criterion (MAE and MSE) and 
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results shows that the Lasso regression is better than another 

type of penalized method. 

1. Introduction  

The penalized least squares method has been repeatedly shown to be an appealing 

regression shrinkage and selection method. This process differs from standard 

approaches to variable selection in that it identifies significant variables while also 

estimating regression coefficients. The estimators produced are as efficient as the 

Oracle estimator. Furthermore, non-significant variables are eliminated by estimating 

their coefficients as recent related research includes (Van der Kooij, A.J., 2007). 

Multiple regression is often used to estimate a model for predicting future responses, 

or to investigate the relationship between the response variable and the predictor 

variables. For the first goal the prediction accuracy of the model is important, for the 

second goal the complexity of the model is of more interest. Ordinary least squares 

(OLS) regression is known for often not performing well with respect to both 

prediction accuracy and model complexity. Several regularized regression methods 

were developed the last few decades to overcome these flaws of OLS regression, 

starting with Ridge regression (Hoerl and Kennard 1970a,b), followed by Bridge 

regression (Frank and Friedman 1993), the Garotte (Breiman 1995), and the Lasso 

(Tibshirani 1996), and more recently LARS (Efron, Hastie, Johnstone, and Tibshirani 

2004), Pathseeker (Friedman and Popescu 2004), and the Elastic Net (Zou and Hastie 

2005).  

OLS regression may result in highly variable estimates of the regression coefficients 

in the presence of collinearity or when the number of predictors (k) is large relative 

to the number of observations (N). Ridge regression reduces this variability by 

shrinking the coefficients, resulting in more prediction accuracy at the cost of usually 

only a small increase of bias. In Ridge regression, the coefficients are shrunken 

towards zero, but will never become exactly zero. So, when the number of predictors 

is large, Ridge regression will not provide a sparse model that is easy to interpret. 

Subset selection, on the other hand, does provide interpretable models but does not 

reduce the variability of the estimates of the coefficients. While not reducing the 

variability of the coefficient estimates of the selected variables, subset selection can 
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reduce the variability of the prediction estimates, but not as much as Ridge regression 

or the Lasso. The Lasso was developed by Tibshirani (1996) to improve both predition 

accuracy and model interpretability by combining the nice features In this study; 

penalized methods with wavelet shrinkage are proposed for effectively handling of 

these issues. 

2. Penalized Methods: 

Penal methods have appeared in recent years and have gained wide popularity 

among statisticians, as these methods are an important key to performing the 

selection of variables and estimating parameters simultaneously; so many penalty 

methods have been proposed through which a penalty constraint is added to the 

regression models (Tutz, G. and Ulbricht, J., 2009). The goal of adding the penalty 

restriction is to control the complexity of the model and provide a criterion for the 

selection of variables, by introducing some restrictions on the transactions that 

impose on some transactions that their value is equal to zero (Helwig, N.E., 2017). 

The penalty constraint quantity works to balance the variance and bias in the chosen 

model. When the penalty amount is small, a larger number of explanatory variables 

are selected with a small bias, but the variance will be large, on the contrary, a large 

penalty amount causes few explanatory variables to be selected with a large bias but 

the variance will be lower. Therefore, a good choice of penalty amount leads to 

improving the prediction accuracy and ease of understanding and interpretation of 

the model, 

In general, it is known as Penalized Linear Regression (PLR); as follows: 

       PLR(β; λ) = (Y − Xβ)T(Y − Xβ) + λ ∑ Pλ(|βj|)
p
j=1                 (1)   

where the amount  Pλ(|βj|) represents the penalty term, which is a function of 

coefficients, and (λ) represents the tuning parameter, since (λ ≥ 0),   and that the 

penalty limit depends entirely on the value of (λ) as it controls the amount of 

shrinkage of parameter values. When the value is (λ = 0)  then we get the 

estimations of the Ordinary Least Squares method (OLS). Conversely, as the value of 
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(λ)  increases, the number of variables excluded from the model will increase (Wood, 

Simon., 2006). 

In partial linear regression, estimates of the model parameters are found using this 

equation: 

βPLR
^ = argmin(Y − Xβ)T(Y − Xβ) + λ ∑ Pλ(|βj|)

p
j=1           (2) 

The two researchers (2001) (Jianging Fan and Li) suggested that a good penalty term 

should produce an estimator that has three properties, first, (un-biasedness) when 

the variable is unbiased for large real parameters. Second, (sparsity) makes small 

estimators exactly zero. Finally, the estimated continuity is (continuous) in the data 

to avoid instability in the model prediction. 

There are many penalized methods that have been proposed and their characteristics 

studied, including Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), 

Elastic-Net, Bridge and other methods. 

2.1. Ridge Regression: 

Regression modeling with associated explanatory variables presents a challenging 

problem when selecting variables and estimating parameters. The reason for this is, 

in the case of multicollinearity, the data matrix does not have enough information to 

distinguish the effect of a correlated variable versus a variable another related. In 

choosing a variable, selection methods tend to choose arbitrarily for one of the 

variables associated and does not take into account the significance of the specified 

variable. In addition, the existence of plurality linearity impairs prediction accuracy by 

amplifying the variance of parameter estimates, which may lead to removing 

significant coefficients from the model (Van der Kooij, A.J., 2007). 

The ridge regression method was proposed by (Hoerl and Kennard) (1970) and it is 

considered one of the oldest penalty methods, as it received great attention because 

of its ability to overcome the problem of multicollinearity without removing the 

explanatory variables from the regression model. The Ridge Regression method 

reduces the variance in the coefficient estimates by adding a penalty quantity that 
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follows the rule (L2 - norm) to the sum of the squares of the residuals, as the penalty 

quantity reduces the regression coefficients. 

Penalty linear regression is defined using the ridge term as follows: 

PLR(β; λ)Ridge = (Y − Xβ)T(Y − Xβ) + λ ∑ βj
2p

j=1                (3) 

So that the penalty term  (∑ βj
2)

p
j=1    represents the (L2 - norm) rule the estimates of 

the parameters in the penalty regression model can be obtained from equation (1.7) 

as follows:       

β̂PLR
Ridge

= (XTX + λI)−1XTy                           (4) 

Since I is the identity matrix with capacity P and λ is the positive shrinkage parameter, 

adding λI to the main diameter elements in the (XTX) information matrix reduces the 

variance of the OLS estimates with the addition of an amount of bias to it.  

In ridge regression, the coefficients are gradually reduced towards zero, but they do 

not make them equal to zero at all, and then all the variables remain in the model, as 

a result, it is not possible in the ridge regression method to choose the variables and 

therefore the resulting linear regression model cannot be easily explained, especially 

if the number of Large explanatory variables. 

2.2. Lasso Regression (Least Absolute Shrinkage and Selection Operator):  

The loss functions for the Lasso can be viewed as constrained versions of the ordinary 

least squares (OLS) regression loss function. In Lasso Regression constrains the sum 

of the absolute values of the coefficients as follows (Van der Kooij., 2007):     

Llasso(β1, … , βP) = ‖y − ∑ βjXj
P
j=1 ‖

2
, subject to ∑ |βj| ≤ t1

P
j=1     (5) 

with N the number of observations, P the number of predictor variables, 

βj, (j = 1, . . ., P), the regression coefficients, and t1 the Lasso tuning parameter, and 

where ‖. ‖2 denotes the squared Euclidean norm. 

This constrains loss functions can also be written as penalized loss functions: 
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Llasso(β1, … , βP) = ‖y − ∑ βjXj
P
j=1 ‖

2
+ λ1 ∑ sign(βj)βj

P
j=1   (6) 

the with  λ1 the Lasso penalty, penalizing the sum of the absolute values of the 

regression coefficients. In matrix notation, the penalized loss functions are written as: 

Llasso(β1, … , βP) = ‖y − Xβ‖2 + λ1wTβ                       (7) 

Where: 

 The elements wj of (w) are either +1 or −1, depending on the sign of the 

corresponding regression coefficientβj.  

Minimizati on of the constrained loss function is more complicated. The regression 

coefficients are estimated as 

βlasso(β1, … , βP) = (XTX)−1(XTy +
λ1

2
w)                     (8) 

 

2.3. Elastic Net Regression: 

Elastic net regression combines the penalty terms of ridge and lasso 

regression.  When fitting models with elastic net, we minimize the function. 

Zou and Hastie (2005) have proposed the Elastic Net and developed an algorithm, 

called LARS-EN, based on the efficient LARS algorithm, to overcome the Lasso 

limitations of selecting at most N predictors and of selecting only one predictor from 

a group of highly correlated predictors. For the Elastic-Net the regression coefficients 

are estimated as 

β̂PLR
Enet = (XTX + λ2I)−1 (XTy −

λ1

2
 sign(Bj

OLS))        (9) 

2.4. Bridge Regression: 

Bridge regression is a broad class of the penalized regression method proposed by 

Frank and Friedman (1993). The bridge estimate can be obtained by minimizing. 

βPLR
^ = argmin {∑ (Yi − Xi

Tβ)
2n

i=1 + λ ∑ |βj|
qp

j=1 }               (10) 
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It does variable selection when 0 < q ≤ 1, and shrinks the coefficients when q >1. Frank 

and Friedman (1993) did not solve for the estimator of bridge regression for any given 

q > 0, but they pointed out that it is desirable to optimize the parameter q. 

Fu (1998) studied the structure of bridge estimators and proposed a general 

algorithm to solve for q ≥1. The shrinkage parameter q and the tuning parameter λ 

are selected via generalized cross-validation. Knight and Fu (2000) showed asymptotic 

properties of bridge estimators with q>0 when p is fixed. Huang et al. (2008) studied 

the asymptotic properties of bridge estimators in sparse, high-dimensional, linear 

regression models when the number of covariates p may increase along with the 

sample size n. introduced an Lq support vector machine algorithm that selects q from 

the data. The effect of the Lq penalty with different q’s, and we briefly mention some 

parts of it here along with the effect of the elastic net.  

Despite the flexibility of bridge estimators, the non-convexity of the penalty function 

may reduce the practical use of the estimators. In order to avoid the non-convex 

optimization problem, we introduce two algorithms for solving bridge regression. The 

first method applies the local quadratic approximation (LQA) suggested by Fan and Li 

(2001) and the second applies the local linear approximation (LLA) suggested by Zou 

and Li (2008). 

For the LLA, we use one-step estimates proposed by Zou and Li (2008), which 

automatically adopts a sparse representation. The one-step bridge estimator for 0 < 

q <1 is obtained as follows.  

Define xij
∗ = (√2|β0j|

1−q
xij)/q andYi

∗ = √2xi
Tβ0. Using(xij

∗ , Yi
∗), we apply the LARS 

algorithm (Efron et al., 2004) to solve 

βPLR
^ Bridge

= argmin {∑ (Yi
∗ − Xi

∗Tβ)
2n

i=1 + λ ∑ |βj|
p
j=1 }           (11) 

Then 

β1j = (βj
^∗

|β0j|
1−q

)/q. 
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Zou and Li (2008) showed that the LLA is the best convex MM algorithm, which proves 

the convergence of the LLA algorithm. The LLA naturally produces sparse estimates 

without iterations, which also reduces the computational burden. 

3. Heavy-Tailed Distributions 

In probability theory, a heavy-tailed distribution is one that has heavier tails than the 

exponential distribution and whose tails are not exponentially constrained. Although 

a distribution may have a heavy left tail, a heavy right tail, or both tails, it is often the 

right tail of the distribution that is of importance in applications. The long-tailed 

distributions and the sub exponential distributions are two significant subclasses of 

heavy-tailed distributions. Practically speaking, any heavy-tailed distribution that is 

often utilized belongs to the sub exponential class. 

3.1 Student’s t-distribution 

Statistical scientist Gosset was the first to introduce in 1908 under the name  Student. 

Later, fisher made in 1920 additions to this distribution. The probability density 

function of the Student’s t-distribution can be written as follows:  (Härdle & Simar, 

2007) 

 

Since  is a parameter of the distribution, which represents the number of          

degrees of freedom and      . 

4. Application Part: 

This Part included a practical comparison of the methodologies employed in the 

estimation process represented by Types of penalized methods. The relative 

efficiency, which is represented by the mean square of error and mean absolute error, 
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was determined to present with a review of the most essential strategy of 

regularization for coefficients regression. 

4.1. Simulation Study: 

To implement the simulation experiments, different levels of the following factors 

were used sample sizes n, Where three sample sizes were used, namely, the 

simulation experiment included many cases, as three sizes of samples were used, 

which are (50, 150, 300) when the number of parameters (k) is equal to(15 and 40), 

and we contaminate (15) of (ei) vector without modifying explanatory variables such 

that this contaminated values can cause outliers. Here original (ei) values are taken 

from a standard normal distribution with (zero mean and standard deviation equal to 

2 and 6) and generated (15%) values from the Student t distribution. These values 

produce contaminate the data by using this formula   f(x) = (1 − p) ∗ f1(x) + p ∗

f2(x). The explanatory variables are independent of a normal distribution (with a 

mean equal to zero and a standard deviation equal to one). When the number of 

parameters (𝑘) is equal to (7 2 0 -0.5 0 0 0 3 5 0 0 0 0 0 0) where b =5 are numbers of 

non- zero parameters, and the second case (K) equal to (2 4 0 -6 0 3 0 1 0 0.5 0 -8 5 0 

3 -0.5 -2 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) where b =13 are numbers of non-

zero parameters. For the frequency of (1000) iterations of the assumed regression 

model and each of the cases shown in tables (1, 2, 3, 4) a comparison was made 

between the methods used in the estimation process represented by Penalized 

methods (Ridge, Lasso, Elastic-Net, and Bridge) and parameters can now be defined 

for the default model. The comparison was made to calculate the relative efficiency, 

which represents the average mean square of error (AMSE) and average mean 

absolute error (AMAE). 

Case 1: When λ = 0.5 

Table 1: The average (MAE and MSE) values for types of penalized methods. 

 
k=
15 

Penalized             
Method 

(15% Contaminate) 

n =50 n =150 n =300 

AMAE AMSE AMAE AMSE AMAE AMSE 

 Ridge 2.5439 16.7695 2.7536 16.6204 2.7941 16.7946 
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σ = 2 

Lasso 2.5237 16.5363 2.7524 16.5994 2.7742 16.7897 

Elastic-
Net 

2.5426 16.7734 2.7532 16.6207 2.7939 16.7946 

Bridge 2.5313 16.6063 2.7527 16.6035 2.7781 16.7905 

 

 
 

σ = 6 

Ridge 4.6490 49.4381 5.2249 49.2199 5.3382 48.6983 

Lasso 4.6350 49.1467 5.2238 49.1985 5.3380 48.6934 

Elastic-
Net 

4.6490 49.4440 5.2249 49.2203 5.3382 48.6984 

Bridge 4.6392 49.2316 5.2241 49.2030 5.3381 48.6944 

Table 2: The average (MAE and MSE) values for types of penalized methods. 

 
k=40 

Penalized             
Method 

(15% Contaminate) 

n =50 n =150 n =300 

AMAE AMSE AMAE AMSE AMAE AMSE 

 
 

σ = 2 

Ridge 1.5124 21.2100 2.5988 16.9480 2.7357 16.8297 

Lasso 1.3318 16.7809 2.7597 16.7570 2.7318 16.7892 

Elastic-Net 1.5165 21.3507 2.5981 16.9497 2.7353 16.8301 

Bridge 1.7844 29.0506 2.5858 16.8084 2.7328 16.7977 

 

 
 

σ = 6 

Ridge 2.4409 54.2406 4.7096 49.7400 5.1204 49.0876 

Lasso 2.3030 48.6127 4.7001 49.5415 5.1184 49.0469 

Elastic-Net 2.4451 54.4177 4.7095 49.7418 5.1204 49.0879 

Bridge 2.6496 62.9910 4.7030 49.5981 5.1188 49.0560 

Case 2: When λ = 3 

Table 3: The average (MAE and MSE) values for types of penalized methods. 

 
k=15 

Penalized             
Method 

(15% Contaminate) 

n =50 n =150 n =300 

AMAE AMSE AMAE AMSE AMAE AMSE 

 Ridge 3.0676 23.0318 2.8866 17.8551 2.8315 17.0891 
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σ = 2 

Lasso 2.5437 16.8662 2.7508 16.6458 2.7907 16.7301 

Elastic-Net 3.0702 19.5921 2.8861 17.8729 2.8310 17.0393 

Bridge 2.7494 19.9446 2.7691 16.7994 2.9520 16.7628 

 

 
 

σ = 6 

Ridge 4.9252 55.6865 5.2509 49.6576 5.3723 49.2280 

Lasso 4.6079 49.1007 5.1834 48.4282 5.3517 48.2280 

Elastic-Net 4.9297 55.8234 5.2516 49.6777 5.3725 49.2332 

Bridge 4.7605 52.1637 5.7674 48.5926 5.3538 48.9019 

Table 4: The average (MAE and MSE) values for types of penalized methods. 

 
k=40 

Penalized             
Method 

(15% Contaminate) 

n =50 n =150 n =300 

AMAE AMSE AMAE AMSE AMAE AMSE 

 
 

σ = 2 

Ridge 1.6423 24.7739 2.7778 18.9710 2.8250 17.6759 

Lasso 1.4693 20.0937 2.5757 16.8293 2.7377 16.8923 

Elastic-Net 1.7398 27.7240 2.7754 18.9965 2.8235 17.6833 

Bridge 1.8838 27.8878 2.7565 18.7007 2.7733 17.2022 

 

 
 

σ = 6 

Ridge 2.5822 60.7328 4.8017 50.8248 5.1444 49.4874 

Lasso 2.4076 52.86564 4.6909 48.5935 5.0998 48.6862 

Elastic-Net 2.6518 63.8661 4.8022 50.8509 5.1445 49.4950 

Bridge 4.1129 67.9239 4.7950 50.6633 5.1188 49.0183 

5. Conclusion: 

1- Through Simulation study reached results the Lasso regression is better than 

another type of penalized method according to the criterion of (MAE) and (MSE). 

2- Increased values of (MAE) when increasing sample size and standard deviation. 
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  کان ە ر ە ت ێ پارام  ی ندن ڵ مە خ   ۆ سزادراو ب  ی واز ێ ش   ک ێ ند ە ه   وان ێ ن   ە ل  ک ێ راورد ە ب 
 ( کردنە وێ ھاوش داتا )

 پـوخـتـە: 
 ی کێاوۆڕگ  وانێن  یکانییەکارا  ییەندەوەی پ  یریقامگەس  ینیپشکن  ۆ ب  ەکێکیکنەت  کردنیرێچاود

بوون  یبوونەڕپێت  ەب  کەیەوەوونکردنڕ  ەاوۆڕگ  ندەچ  انی  کێکیەو    ەوەمدانەڵاو  سبوون یپ  یکات. 
د  کردنیرێچاود   لکردن،ێدۆم  رەسە ل  یجدد  ینێرەن  یرە گیکار ه  یشانکردنیستنەو  ئەیەداتاکان   م ە. 
  ە وەسزادراو  ەیکشەپاش  یکانەاوازیج  ەر ۆج  ەیوانگڕ  ەل   سبوونیپ  ێینو  یکێکار ڕێ  ەیەوەنیژێتو
  کردن ەڵەمام  ۆب  ە نیباشتر  ە سزادراو ک  یکێواز ێش  ەرۆج  رەه  یکردنیار ید  یئامانج  ەب  کات، ە د  ار یشنێپ
  یەگاڕێ  نیباشتر  ۆلاس  ەیکش ەپاش  ە ک  داتەد   شان ین  ەیەوەنیژێتو  مە. ئسبوونیپ  یکانییەار یزان  ەڵگەل
ل  یکلک  یشکردنەداب  یوتەسوکەڵه  ێیپەب  سبوونیپ  یداتاکان  ۆب و   کانەرەمدەڵاو  ەاوۆڕگ  ەقورس 
  وان ێن  یراوردکردنە. بسبوونیپ  ەڵگە داتاکان ل  %(15)  ۆب  کردنەوێھاوش  یکانەوەکردنیتاق  ینانێکارهەب

ل  یوازێش  یکانەرۆج ئ  (MSEو    MAE)  کانییەئامار  ەرەوێپ  یماەبن  رەسەسزادراو    کانەنجامەو 
 . سزادراو یوازێش  یتر یکێرۆج ەل ەباشتر ۆلاس ەیکشە پاش ەک  خاتەدیرەد

 (لتقدير المعاملات )دراسة محاكاة جزائي ال طرائق مقارنة بين بعض 

  :الملخص

المتغيرات   من  أكثر  أو  استجابة ومتغير  متغير  بين  الوظيفية  العلاقات  استقرار  للتحقق من  تقنية  المراقبة هي 

التوضيحية بمرور الوقت. إن وجود التلوث له آثار ضارة خطيرة على نمذجة البيانات ومراقبتها وتشخيصها.  

، بهدف تحديد أي    جزائيال فة من الانحدار  تقترح هذه الورقة إجراءً جديدًا للتلوث من وجهة نظر أنواع مختل

هو أفضل    جزاءالأفضل للتعامل مع بيانات التلوث. يوضح هذا البحث أن الانحدار ال  الجزائي  طرائقأنواع من  

المحاكاة  لمتغيرات الاستجابة واستخدام تجارب  الثقيل  الذيل  اعتمادًا على سلوك توزيع  التلوث  لبيانات  طريقة 

  MAEعليها بناءً على المعيار الإحصائي ) جزائيطرائق  لتلوث. تظُهر المقارنة بين أنواع  ٪( مع ا15لبيانات )

 اخرى.  طرائقأفضل من أي نوع آخر من ا Lasso( والنتائج أن انحدار MSEو 


