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popularity as a key for simultaneously performing variable
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Ridge Regression;

types of penalized regression, aiming at identifying any types
Elastic-Net Regression;

Elastic-Net; Bridge.

of penalized methods that are best to deal with
contamination data. This paper demonstrates that the Lasso

Doi regression is the best method for contamination data
oi:

. depending on the heavy tail distribution behavior of the
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response variables and using simulation for (15%) data with
contamination. The comparison between types of penalized
methods based on the statistical criterion (MAE and MSE) and
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results shows that the Lasso regression is better than another
type of penalized method.

1. Introduction

The penalized least squares method has been repeatedly shown to be an appealing
regression shrinkage and selection method. This process differs from standard
approaches to variable selection in that it identifies significant variables while also
estimating regression coefficients. The estimators produced are as efficient as the
Oracle estimator. Furthermore, non-significant variables are eliminated by estimating
their coefficients as recent related research includes (Van der Kooij, A.J., 2007).
Multiple regression is often used to estimate a model for predicting future responses,
or to investigate the relationship between the response variable and the predictor
variables. For the first goal the prediction accuracy of the model is important, for the
second goal the complexity of the model is of more interest. Ordinary least squares
(OLS) regression is known for often not performing well with respect to both
prediction accuracy and model complexity. Several regularized regression methods
were developed the last few decades to overcome these flaws of OLS regression,
starting with Ridge regression (Hoerl and Kennard 1970a,b), followed by Bridge
regression (Frank and Friedman 1993), the Garotte (Breiman 1995), and the Lasso
(Tibshirani 1996), and more recently LARS (Efron, Hastie, Johnstone, and Tibshirani
2004), Pathseeker (Friedman and Popescu 2004), and the Elastic Net (Zou and Hastie
2005).

OLS regression may result in highly variable estimates of the regression coefficients
in the presence of collinearity or when the number of predictors (k) is large relative
to the number of observations (N). Ridge regression reduces this variability by
shrinking the coefficients, resulting in more prediction accuracy at the cost of usually
only a small increase of bias. In Ridge regression, the coefficients are shrunken
towards zero, but will never become exactly zero. So, when the number of predictors
is large, Ridge regression will not provide a sparse model that is easy to interpret.
Subset selection, on the other hand, does provide interpretable models but does not
reduce the variability of the estimates of the coefficients. While not reducing the
variability of the coefficient estimates of the selected variables, subset selection can
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reduce the variability of the prediction estimates, but not as much as Ridge regression
or the Lasso. The Lasso was developed by Tibshirani (1996) to improve both predition
accuracy and model interpretability by combining the nice features In this study;
penalized methods with wavelet shrinkage are proposed for effectively handling of
these issues.

2. Penalized Methods:

Penal methods have appeared in recent years and have gained wide popularity
among statisticians, as these methods are an important key to performing the
selection of variables and estimating parameters simultaneously; so many penalty
methods have been proposed through which a penalty constraint is added to the
regression models (Tutz, G. and Ulbricht, J., 2009). The goal of adding the penalty
restriction is to control the complexity of the model and provide a criterion for the
selection of variables, by introducing some restrictions on the transactions that
impose on some transactions that their value is equal to zero (Helwig, N.E., 2017).
The penalty constraint quantity works to balance the variance and bias in the chosen
model. When the penalty amount is small, a larger number of explanatory variables
are selected with a small bias, but the variance will be large, on the contrary, a large
penalty amount causes few explanatory variables to be selected with a large bias but
the variance will be lower. Therefore, a good choice of penalty amount leads to
improving the prediction accuracy and ease of understanding and interpretation of
the model,

In general, it is known as Penalized Linear Regression (PLR); as follows:

PLR(B; 1) = (Y = XB)"(Y — XB) + A X}, Po(|B)]) (1)

where the amount P;\(|Bj|) represents the penalty term, which is a function of
coefficients, and (1) represents the tuning parameter, since (A = 0), and that the
penalty limit depends entirely on the value of (A) as it controls the amount of
shrinkage of parameter values. When the value is (A =0) then we get the
estimations of the Ordinary Least Squares method (OLS). Conversely, as the value of
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(A) increases, the number of variables excluded from the model will increase (Wood,
Simon., 2006).

In partial linear regression, estimates of the model parameters are found using this
equation:

Bprr = argmin(Y — XB)T(Y = XB) + AN R(|B;)  (2)

The two researchers (2001) (Jianging Fan and Li) suggested that a good penalty term
should produce an estimator that has three properties, first, (un-biasedness) when
the variable is unbiased for large real parameters. Second, (sparsity) makes small
estimators exactly zero. Finally, the estimated continuity is (continuous) in the data
to avoid instability in the model prediction.

There are many penalized methods that have been proposed and their characteristics
studied, including Ridge, Least Absolute Shrinkage and Selection Operator (LASSO),
Elastic-Net, Bridge and other methods.

2.1. Ridge Regression:

Regression modeling with associated explanatory variables presents a challenging
problem when selecting variables and estimating parameters. The reason for this is,
in the case of multicollinearity, the data matrix does not have enough information to
distinguish the effect of a correlated variable versus a variable another related. In
choosing a variable, selection methods tend to choose arbitrarily for one of the
variables associated and does not take into account the significance of the specified
variable. In addition, the existence of plurality linearity impairs prediction accuracy by
amplifying the variance of parameter estimates, which may lead to removing
significant coefficients from the model (Van der Kooij, A.J., 2007).

The ridge regression method was proposed by (Hoerl and Kennard) (1970) and it is
considered one of the oldest penalty methods, as it received great attention because
of its ability to overcome the problem of multicollinearity without removing the
explanatory variables from the regression model. The Ridge Regression method
reduces the variance in the coefficient estimates by adding a penalty quantity that
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follows the rule (L2 - norm) to the sum of the squares of the residuals, as the penalty
guantity reduces the regression coefficients.
Penalty linear regression is defined using the ridge term as follows:

PLR(B; MR8 = (Y — XB)T(Y — XB) + A X}, B7 (3)

So that the penalty term (Z]p=1 [3]-2) represents the (L2 - norm) rule the estimates of

the parameters in the penalty regression model can be obtained from equation (1.7)
as follows:

»Rid -
. = XX+ 2D XTy (4)

Since | is the identity matrix with capacity P and A is the positive shrinkage parameter,
adding Al to the main diameter elements in the (XTX) information matrix reduces the
variance of the OLS estimates with the addition of an amount of bias to it.

In ridge regression, the coefficients are gradually reduced towards zero, but they do
not make them equal to zero at all, and then all the variables remain in the model, as
a result, it is not possible in the ridge regression method to choose the variables and
therefore the resulting linear regression model cannot be easily explained, especially
if the number of Large explanatory variables.

2.2. Lasso Regression (Least Absolute Shrinkage and Selection Operator):
The loss functions for the Lasso can be viewed as constrained versions of the ordinary
least squares (OLS) regression loss function. In Lasso Regression constrains the sum
of the absolute values of the coefficients as follows (Van der Kooij., 2007):

2 .
Lfasso(B,, ..., Bp) = ||y — Z]P:l BiXi||”, subjectto Z]-P=1|Bj| <t; (5)
with N the number of observations, P the number of predictor variables,

Bj, (i=1,..., P), the regression coefficients, and t; the Lasso tuning parameter, and
where ||. ||? denotes the squared Euclidean norm.
This constrains loss functions can also be written as penalized loss functions:
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Lasso(B, ..., Bp) = ”y - Z]P=1 BiX; ”2 + 2 Z]P=1 sign(B;)B; (6)

the with A; the Lasso penalty, penalizing the sum of the absolute values of the
regression coefficients. In matrix notation, the penalized loss functions are written as:

LlaSSO(Bl, v Bp) = lly — XB”Z + 7\1WTB (7)

Where:

The elements wj of (w) are either +1 or -1, depending on the sign of the
corresponding regression coefficient;.

Minimizati on of the constrained loss function is more complicated. The regression
coefficients are estimated as

BBy, ..., Bp) = (XTX) T (XTy + 2 w) (8)

2.3. Elastic Net Regression:

Elastic net regression combines the penalty terms of ridge and lasso
regression. When fitting models with elastic net, we minimize the function.

Zou and Hastie (2005) have proposed the Elastic Net and developed an algorithm,
called LARS-EN, based on the efficient LARS algorithm, to overcome the Lasso
limitations of selecting at most N predictors and of selecting only one predictor from
a group of highly correlated predictors. For the Elastic-Net the regression coefficients
are estimated as

BEREE = (XTX + 2,17t (XTy — 2 sign(BP'S))  (9)

2.4. Bridge Regression:
Bridge regression is a broad class of the penalized regression method proposed by
Frank and Friedman (1993). The bridge estimate can be obtained by minimizing.

BpLr = argmin{ (Y- X?B)Z + )\Z,lelﬁjlq} (10)
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It does variable selection when 0 < g <1, and shrinks the coefficients when g >1. Frank
and Friedman (1993) did not solve for the estimator of bridge regression for any given
g > 0, but they pointed out that it is desirable to optimize the parameter q.

Fu (1998) studied the structure of bridge estimators and proposed a general
algorithm to solve for q 21. The shrinkage parameter q and the tuning parameter A
are selected via generalized cross-validation. Knight and Fu (2000) showed asymptotic
properties of bridge estimators with g>0 when p is fixed. Huang et al. (2008) studied
the asymptotic properties of bridge estimators in sparse, high-dimensional, linear
regression models when the number of covariates p may increase along with the
sample size n. introduced an Lq support vector machine algorithm that selects q from
the data. The effect of the Lg penalty with different q’s, and we briefly mention some
parts of it here along with the effect of the elastic net.

Despite the flexibility of bridge estimators, the non-convexity of the penalty function
may reduce the practical use of the estimators. In order to avoid the non-convex
optimization problem, we introduce two algorithms for solving bridge regression. The
first method applies the local quadratic approximation (LQA) suggested by Fan and Li
(2001) and the second applies the local linear approximation (LLA) suggested by Zou
and Li (2008).

For the LLA, we use one-step estimates proposed by Zou and Li (2008), which
automatically adopts a sparse representation. The one-step bridge estimator for 0 <
g <1is obtained as follows.

1_
Define xj; = (\/§|B0j| qxi]-)/q andY; = v2x B,. Using(xj;, Y; ), we apply the LARS
algorithm (Efron et al., 2004) to solve

b 98 = argmin {TIL, (v - XTB)" + A3, [8(}  (11)
Then

Bl D/a.

By = (B
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Zou and Li (2008) showed that the LLA is the best convex MM algorithm, which proves
the convergence of the LLA algorithm. The LLA naturally produces sparse estimates
without iterations, which also reduces the computational burden.

3. Heavy-Tailed Distributions

In probability theory, a heavy-tailed distribution is one that has heavier tails than the
exponential distribution and whose tails are not exponentially constrained. Although
a distribution may have a heavy left tail, a heavy right tail, or both tails, it is often the
right tail of the distribution that is of importance in applications. The long-tailed
distributions and the sub exponential distributions are two significant subclasses of
heavy-tailed distributions. Practically speaking, any heavy-tailed distribution that is
often utilized belongs to the sub exponential class.

3.1 Student’s t-distribution

Statistical scientist Gosset was the first to introduce in 1908 under the name Student.
Later, fisher made in 1920 additions to this distribution. The probability density
function of the Student’s t-distribution can be written as follows: (Hardle & Simar,

2007)
F(V +1)
2
fxv)= i
v x*)2 12)
N/ F[] 1+—
2 1%
Since ¥ is a parameter of the distribution, which represents the number of

degrees of freedom and ToSX <%

4. Application Part:

This Part included a practical comparison of the methodologies employed in the
estimation process represented by Types of penalized methods. The relative

efficiency, which is represented by the mean square of error and mean absolute error,
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was determined to present with a review of the most essential strategy of
regularization for coefficients regression.

4.1. Simulation Study:

To implement the simulation experiments, different levels of the following factors
were used sample sizes n, Where three sample sizes were used, namely, the
simulation experiment included many cases, as three sizes of samples were used,
which are (50, 150, 300) when the number of parameters (k) is equal to(15 and 40),
and we contaminate (15) of (e;) vector without modifying explanatory variables such
that this contaminated values can cause outliers. Here original (e;) values are taken
from a standard normal distribution with (zero mean and standard deviation equal to
2 and 6) and generated (15%) values from the Student t distribution. These values
produce contaminate the data by using this formula f(x) = (1 —p) *f;(x) + p *
f,(x). The explanatory variables are independent of a normal distribution (with a
mean equal to zero and a standard deviation equal to one). When the number of
parameters (k) is equalto (720-0.50003 500000 0) where b =5 are numbers of
non- zero parameters, and the second case (K) equalto (240-6030100.50-850
3-0.5-2690000000000000000000000) where b =13 are numbers of non-
zero parameters. For the frequency of (1000) iterations of the assumed regression
model and each of the cases shown in tables (1, 2, 3, 4) a comparison was made
between the methods used in the estimation process represented by Penalized
methods (Ridge, Lasso, Elastic-Net, and Bridge) and parameters can now be defined
for the default model. The comparison was made to calculate the relative efficiency,
which represents the average mean square of error (AMSE) and average mean
absolute error (AMAE).

Case 1: When A = 0.5

Table 1: The average (MAE and MSE) values for types of penalized methods.

(15% Contaminate)
k= | Penalized n =50 n =150 n =300
15 Method
AMAE AMSE AMAE AMSE AMAE AMSE
Ridge 2.5439 16.7695 2.7536 16.6204 | 2.7941 | 16.7946
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Lasso 2.5237 | 16.5363 | 2.7524 | 16.5994 | 2.7742 | 16.7897
o=2
Elastic-
Not 2.5426 | 16.7734 | 2.7532 | 16.6207 | 2.7939 | 16.7946
Bridge | 2.5313 | 16.6063 | 2.7527 | 16.6035 | 2.7781 | 16.7905
Ridge | 4.6490 | 49.4381 | 5.2249 | 49.2199 | 5.3382 | 48.6983
lasso | 4.6350 | 49.1467 | 5.2238 | 49.1985 | 5.3380 | 48.6934
Elastic-
o=6 Net 4.6490 49.4440 5.2249 49.2203 | 5.3382 | 48.6984
Bridge | 4.6392 | 49.2316 | 5.2241 | 49.2030 | 5.3381 | 48.6944

Table 2: The average (MAE and MSE) values for types of penalized methods.
(15% Contaminate)

Penalized n =50 n =150 n =300
k=40 Method

AMAE AMSE AMAE AMSE AMAE AMSE

Ridge 1.5124 | 21.2100 | 2.5988 | 16.9480 | 2.7357 | 16.8297

Lasso 1.3318 | 16.7809 | 2.7597 | 16.7570 | 2.7318 | 16.7892

o=2 Elastic-Net | 1.5165 | 21.3507 | 2.5981 | 16.9497 | 2.7353 | 16.8301

Bridge 1.7844 | 29.0506 | 2.5858 | 16.8084 | 2.7328 | 16.7977

Ridge 2.4409 | 54.2406 | 4.7096 | 49.7400 | 5.1204 | 49.0876

Lasso 2.3030 | 48.6127 | 4.7001 | 49.5415 | 5.1184 | 49.0469

o=6 Elastic-Net | 2.4451 | 54.4177 | 4.7095 | 49.7418 | 5.1204 | 49.0879

Bridge 2.6496 | 62.9910 | 4.7030 | 49.5981 | 5.1188 | 49.0560

Case 2: When A =3

Table 3: The average (MAE and MSE) values for types of penalized methods.

(15% Contaminate)
Penalized —c0 —150 ~300
k=15 Method n= n= n=
AMAE AMSE AMAE AMSE AMAE AMSE
Ridge 3.0676 23.0318 2.8866 17.8551 | 2.8315 | 17.0891
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Lasso 2.5437 | 16.8662 | 2.7508 | 16.6458 | 2.7907 | 16.7301
o=2
Elastic-Net | 3.0702 | 19.5921 | 2.8861 | 17.8729 | 2.8310 | 17.0393
Bridge 2.7494 | 19.9446 | 2.7691 | 16.7994 | 2.9520 | 16.7628
Ridge 4.9252 | 55.6865 | 5.2509 | 49.6576 | 5.3723 | 49.2280
Lasso 4.6079 | 49.1007 | 5.1834 | 48.4282 | 5.3517 | 48.2280
o=6 Elastic-Net 4.9297 55.8234 5.2516 49.6777 | 5.3725 | 49.2332
Bridge 4.7605 | 52.1637 | 5.7674 | 48.5926 | 5.3538 | 48.9019

Table 4: The average (MAE and MSE) values for types of penalized methods.

. (15% Contaminate)
Penalized
k=40 Method n =50 n =150 n =300
- AMAE AMSE AMAE AMSE AMAE AMSE

Ridge 1.6423 24.7739 2.7778 18.9710 | 2.8250 | 17.6759
Lasso 1.4693 20.0937 2.5757 16.8293 | 2.7377 | 16.8923

G=2 Elastic-Net | 1.7398 27.7240 2.7754 18.9965 | 2.8235 | 17.6833
Bridge 1.8838 | 27.8878 2.7565 18.7007 | 2.7733 | 17.2022
Ridge 2.5822 60.7328 | 4.8017 | 50.8248 | 5.1444 | 49.4874
Lasso 2.4076 | 52.86564 | 4.6909 | 48.5935 | 5.0998 | 48.6862

G=6 Elastic-Net | 2.6518 | 63.8661 | 4.8022 50.8509 | 5.1445 | 49.4950
Bridge 4.1129 67.9239 | 4.7950 | 50.6633 | 5.1188 | 49.0183

5. Conclusion:

1- Through Simulation study reached results the Lasso regression is better than
another type of penalized method according to the criterion of (MAE) and (MSE).
2- Increased values of (MAE) when increasing sample size and standard deviation.
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